Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(\Leftrightarrow\left(x-5\right)\left(x+1\right)\left(x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=5\\x=-1\\x=1\end{matrix}\right.\)
d: \(\Leftrightarrow\left(x+3\right)\left(x^2-4x+5\right)=0\)
\(\Leftrightarrow x+3=0\)
hay x=-3
\(A=16x^2-y^2-16x^2+8x=8x-y^2\\ A=8\cdot3-\left(-1\right)^2=24-1=23\\ B=64x^3-80x-64x^3-1=-80x-1\\ B=-80\cdot\dfrac{1}{5}-1=-16-1=-17\)
a,x3+3x2+3x+1
b,x2+6x+9
c,-x3+9x2-27x+27
d,x2+4x+4
k,10x-25-x2
f,(x+y)2-9x2
g,8x3+42x2y+16xy2+6xy+y3
a) \(x^3+3x^2+3x+1=x^2+3\cdot x^2\cdot1+3\cdot x\cdot1^2+1^3=\left(x-1\right)^3\)
b) \(x^2+6x+9=x^2+2\cdot3\cdot x+3^2=\left(x+3\right)^2\)
c) \(-x^3+9x^2-27x+27\)
\(=-\left(x^3-9x^2+27x-27\right)\)
\(=-\left(x^3-3\cdot3\cdot x^2+3\cdot3^2\cdot x-3^3\right)=-\left(x-3\right)^3\)
d) \(x^2+4x+4=x^2+2\cdot2\cdot x+2^2=\left(x+2\right)^2\)
k) \(10x-25-x^2=-x^2+10x-25=-\left(x^2-10x+25\right)\)
\(=-\left(x^2-2\cdot5\cdot x+5^2\right)=-\left(x-5\right)^2\)
f) \(\left(x+y\right)^2-9x^2=\left(x-y\right)^2-\left(3x\right)^2=\left[\left(x-y\right)-3x\right]\left[\left(x-y\right)+3x\right]\)
\(=\left(x-y-3x\right)\left(x-y+3x\right)=\left(-2x-y\right)\left(4x-y\right)\)
Bài 1:
\(\left(x^2-y\right)\left(3x+y^2\right)-\left(6x^4y-2xy^4\right):2xy\)
\(=3x\cdot x^2+y^2\cdot x^2-y\cdot3x-y\cdot y^2-6x^4y:2xy+2xy^4:2xy\)
\(=3x^3+x^2y^2-3xy-y^3-3x^3+y^3\)
\(=x^2y^2-3xy\)
Bài 2:
a) \(10x^2\left(2x-y\right)+6xy\left(y-2x\right)\)
\(=10x^2\left(2x-y\right)-6xy\left(2x-y\right)\)
\(=2x\left(2x-y\right)\left(5x-3y\right)\)
b) \(x^2-2x+1-y^2\)
\(=\left(x-1\right)^2-y^2\)
\(=\left(x-y-1\right)\left(x+y-1\right)\)
c) \(x^2-8x+12\)
\(=x^2-8x+16-4\)
\(=\left(x-4\right)^2-2^2\)
\(=\left(x-6\right)\left(x+2\right)\)
11) Ta có: \(a^6+a^4+a^2b^2+b^4-b^6\)
\(=a^6-b^6+a^4+a^2b^2+b^4\)
\(=\left(a^2-b^2\right)\left(a^4+a^2b^2+b^4\right)+\left(a^4+a^2b^2+b^4\right)\)
\(=\left(a^4+a^2b^2+b^4\right)\left(a^2-b^2+1\right)\)
12) Ta có: \(x^3+3xy+y^3-1\)
\(=\left(x^3+3x^2y+3xy^2+y^3-1\right)-3x^2y-3xy^2+3xy\)
\(=\left[\left(x+y\right)^3-1\right]-3xy\left(x+y-1\right)\)
\(=\left(x+y-1\right)\left[x^2+2xy+y^2+x+y+1\right]-3xy\left(x+y-1\right)\)
\(=\left(x+y-1\right)\left(x^2-xy+y^2+x+y+1\right)\)
14) Ta có: \(x^8+x+1\)
\(=x^8+x^7-x^7-x^6+x^6+x^5-x^5-x^4+x^4+x^3-x^3+x^2-x^2+x+1\)
\(=x^6\left(x^2+x+1\right)-x^5\left(x^2+x+1\right)+x^3\left(x^2+x+1\right)-x^2\left(x^2+x+1\right)+\left(x^2+x+1\right)\)
\(=\left(x^2+x+1\right)\left(x^6-x^5+x^3-x^2+1\right)\)
15) Ta có: \(x^8+3x^4+4\)
\(=x^8+4x^4+4-x^4\)
\(=\left(x^4+2\right)^2-\left(x^2\right)^2\)
\(=\left(x^4-x^2+2\right)\left(x^4+x^2+2\right)\)
j: \(\dfrac{10x^3-19x^2-4x+4}{2x+1}\)
\(=\dfrac{10x^3+5x^2-24x^2-12x+8x+4}{2x+1}\)
\(=5x^2-12x+4\)
giup minh cau i,k voi a,minh cam on