K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bài 4:

a: \(216x^3+27y^3=27\left(8x^3+y^3\right)\)

\(=27\left[\left(2x\right)^3+y^3\right]\)

\(=27\left(2x+y\right)\left(4x^2-2xy+y^2\right)\)

b: \(64a^3-8=8\left(8a^3-1\right)\)

\(=8\left[\left(2a\right)^3-1^3\right]\)

\(=8\left(2a-1\right)\left(4a^2+2a+1\right)\)

c: \(x^3+8=x^3+2^3=\left(x+2\right)\left(x^2-2x+4\right)\)

d: \(27x^3-8y^3=\left(3x\right)^3-\left(2y\right)^3\)

\(=\left(3x-2y\right)\left[\left(3x\right)^2+3x\cdot2y+\left(2y\right)^2\right]\)

\(=\left(3x-2y\right)\left(9x^2+6xy+4y^2\right)\)

Bài 5:

a: \(3\left(x-y\right)^2-2\left(x+y\right)^2-\left(x-y\right)\left(x+y\right)\)

\(=3\left(x^2-2xy+y^2\right)-2\left(x^2+2xy+y^2\right)-\left(x^2-y^2\right)\)

\(=3x^2-6xy+3y^2-2x^2-4xy-2y^2-x^2+y^2\)

\(=2y^2-10xy\)

b: \(\left(x-y\right)^3-3\left(x-y\right)^2\cdot x+3\left(x-y\right)\cdot x^2-x^3\)

\(=\left(x-y-x\right)^3\)

\(=\left(-y\right)^3=-y^3\)

c: \(\left(3x+3\right)^3-2\left(x+1\right)^3-\left(5x-1\right)^2\)

\(=27\left(x+1\right)^3-2\left(x+1\right)^3-\left(5x-1\right)^2\)

\(=25\left(x+1\right)^3-25x^2+10x-1\)

\(=25x^3+75x^2+75x+25-25x^2+10x-1\)

\(=25x^3+50x^2+85x+24\)

d: \(\left(-2x+3\right)^3-\left(x+1\right)^3+\left(3x-1\right)^2\)

\(=\left(-2x+3-x-1\right)\left[\left(-2x+3\right)^2+\left(-2x+3\right)\left(x+1\right)+\left(x+1\right)^2\right]+\left(3x-1\right)^2\)

\(=\left(-3x+2\right)\left(4x^2-12x+9-2x^2+x+3+x^2+2x+1\right)+\left(3x-1\right)^2\)

\(=\left(-3x+2\right)\left(3x^2-9x+13\right)+\left(3x-1\right)^2\)

\(=-9x^3+27x^2-39x+6x^2-18x+26+9x^2-6x+1\)

\(=-9x^3+42x^2-63x+27\)

NV
16 tháng 1 2024

a.

\(A=\left(\dfrac{\left(x-1\right)\left(x^2+x+1\right)}{x\left(x-1\right)}+\dfrac{\left(x-2\right)\left(x+2\right)}{x\left(x-2\right)}+\dfrac{x-2}{x}\right):\dfrac{x+1}{x}\)

\(=\left(\dfrac{x^2+x+1}{x}+\dfrac{x+2}{x}+\dfrac{x-2}{x}\right):\dfrac{x+1}{x}\)

\(=\left(\dfrac{x^2+3x+1}{x}\right).\dfrac{x}{x+1}\)

\(=\dfrac{x^2+3x+1}{x+1}\)

2.

\(x^3-4x^3+3x=0\Leftrightarrow x\left(x^2-4x+3\right)=0\)

\(\Leftrightarrow x\left(x-1\right)\left(x-3\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x=0\left(loại\right)\\x=1\left(loại\right)\\x=3\end{matrix}\right.\)

Với \(x=3\Rightarrow A=\dfrac{3^2+3.3+1}{3+1}=\dfrac{19}{4}\)

30 tháng 1 2024

4.linda sometimes brings her home made after the class

30 tháng 1 2024

Linh 6A3(THCS Mai Đình) à

 

 

AH
Akai Haruma
Giáo viên
3 tháng 2 2024

Bài 4:

a. Vì $\triangle ABC\sim \triangle A'B'C'$ nên:

$\frac{AB}{A'B'}=\frac{BC}{B'C'}=\frac{AC}{A'C'}(1)$ và $\widehat{ABC}=\widehat{A'B'C'}$

$\frac{DB}{DC}=\frac{D'B'}{D'C}$

$\Rightarrow \frac{BD}{BC}=\frac{D'B'}{B'C'}$

$\Rightarrow \frac{BD}{B'D'}=\frac{BC}{B'C'}(2)$

Từ $(1); (2)\Rightarrow \frac{BD}{B'D'}=\frac{BC}{B'C'}=\frac{AB}{A'B'}$

Xét tam giác $ABD$ và $A'B'D'$ có:

$\widehat{ABD}=\widehat{ABC}=\widehat{A'B'C'}=\widehat{A'B'D'}$

$\frac{AB}{A'B'}=\frac{BD}{B'D'}$

$\Rightarrow \triangle ABD\sim \triangle A'B'D'$ (c.g.c)

b.

Từ tam giác đồng dạng phần a và (1) suy ra:
$\frac{AD}{A'D'}=\frac{AB}{A'B'}=\frac{BC}{B'C'}$

$\Rightarrow AD.B'C'=BC.A'D'$

 

AH
Akai Haruma
Giáo viên
3 tháng 2 2024

Hình bài 4:

NV
16 tháng 1 2024

ĐKXĐ: \(\left|x-2\right|-1\ne0\)

\(\Rightarrow\left|x-2\right|\ne1\)

\(\Rightarrow\left\{{}\begin{matrix}x-2\ne1\\x-2\ne-1\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}x\ne3\\x\ne1\end{matrix}\right.\)