Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1. không đáp án đúng
2.\(\dfrac{1}{y-x}\sqrt{2x^2\left(x-y\right)^2}=\dfrac{-1}{x-y}x\left(x-y\right)\sqrt{2}\left(vì>y>0\right)=-x\sqrt{2}\)
Dễ thấy:
\(VT\ge\left(x+y\right)^2+1-\dfrac{\left(x+y\right)^2}{4}=\dfrac{3\left(x+y\right)^2}{4}+1\)
Áp dụng Cô-si:
\(\dfrac{3\left(x+y\right)^2}{4}+1\ge2\sqrt{\dfrac{3\left(x+y\right)^2}{4}.1}=\sqrt{3}\left|x+y\right|\ge\sqrt{3}\left(x+y\right)\)
Do đó:
\(\left(x+y\right)^2+1-xy\ge\sqrt{3}\left(x+y\right),\forall x,y\in R\)
2:
a: Sửa đề: \(\dfrac{a^2+3}{\sqrt{a^2+2}}>2\)
\(A=\dfrac{a^2+3}{\sqrt{a^2+2}}=\dfrac{a^2+2+1}{\sqrt{a^2+2}}=\sqrt{a^2+2}+\dfrac{1}{\sqrt{a^2+2}}\)
=>\(A>=2\cdot\sqrt{\sqrt{a^2+2}\cdot\dfrac{1}{\sqrt{a^2+2}}}=2\)
A=2 thì a^2+2=1
=>a^2=-1(loại)
=>A>2 với mọi a
b: \(\Leftrightarrow\sqrt{a}+\sqrt{b}< =\dfrac{a\sqrt{a}+b\sqrt{b}}{\sqrt{ab}}\)
=>\(a\sqrt{a}+b\sqrt{b}>=a\sqrt{b}+b\sqrt{a}\)
=>\(\left(\sqrt{a}+\sqrt{b}\right)\left(a-\sqrt{ab}+b\right)-\sqrt{ab}\left(\sqrt{a}+\sqrt{b}\right)>=0\)
=>(căn a+căn b)(a-2*căn ab+b)>=0
=>(căn a+căn b)(căn a-căn b)^2>=0(luôn đúng)
1
ĐK: `x>1`
PT trở thành:
\(\sqrt{\dfrac{2x-3}{x-1}}=2\\ \Leftrightarrow\dfrac{2x-3}{x-1}=2^2=4\\ \Leftrightarrow4x-4-2x+3=0\\ \Leftrightarrow2x-1=0\\ \Leftrightarrow x=\dfrac{1}{2}\left(KTM\right)\)
Vậy PT vô nghiệm.
b
ĐK: \(x\ge2\)
Đặt \(t=\sqrt{x-2}\) (\(t\ge0\))
=> \(x=t^2+2\)
PT trở thành: \(t^2+2-5t+2=0\)
\(\Leftrightarrow t^2-5t+4=0\)
nhẩm nghiệm: `a+b+c=0` (`1+(-5)+4=0`)
\(\Rightarrow\left\{{}\begin{matrix}t=1\left(nhận\right)\\t=4\left(nhận\right)\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\sqrt{x-2}=1\\\sqrt{x-2}=4\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x=3\left(TM\right)\\x=18\left(TM\right)\end{matrix}\right.\)
Áp dụng BĐT \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{9}{a+b+c}\) ta có:
\(\frac{1}{x+y}+\frac{1}{y+z}+\frac{1}{x+z}\)
\(\ge\frac{9}{x+y+y+z+x+z}=\frac{9}{2\left(x+y+z\right)}\)
Dấu "=" xảy ra khi \(x=y=z\)