Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có x/5 = y/4 = z/3
Dễ thấy : y/4 = 2y/8 = -2y/-8
và z/3 = 3z/9
Suy ra : x/5 = y/4 = z/3 => x/5 = 2y/8 = 3z/9 = (x + 2y + 3z)/(5 + 8 + 9) = (x + 2y + 3z)/22
(tính chất của dãy tỉ số bằng nhau)
Tương tự : x/5 = -2y/-8 = 3z/9 = (x - 2y + 3z)/(5 - 8 + 9) = (x- 2y + 3z)/6
Ta có : (x + 2y + 3z)/22 = (x - 2y + 3z)/6 (cùng bằng x/5)
=> (x + 2y + 3z)/(x - 2y + 3z) = 22/6 = 11/3
Tính giá trị biểu thức biết.....??????
Biết gì vậy bạn???????
Bạn ghi thiếu đề kìa!
a. Tại x=\(\frac{-1}{2}\), ta có:
\(\left(\frac{-1}{2}\right)^2+4.\left(\frac{-1}{2}\right)+3=\frac{1}{4}+\left(-2\right)+3=\frac{5}{4}\)
b. Ta có:
\(x^2+4x+3=0\)
\(\Rightarrow x^2+x+3x+3=0\)
\(\Rightarrow\left(x^2+x\right)+\left(3x+3\right)=0\)
\(\Rightarrow x\left(x+1\right)+3\left(x+1\right)=0\)
\(\Rightarrow\left(x+1\right)\left(x+3\right)=0\)
\(\Rightarrow\hept{\begin{cases}x+1=0\\x+3=0\end{cases}\Rightarrow\hept{\begin{cases}x=-1\\x=-3\end{cases}}}\)
Vậy \(x=-1;x=-3\)
a/ \(M=x^4-xy^3+x^3y-y^4-1\)
\(\Leftrightarrow M=x^3\left(x+y\right)-y^3\left(x+y\right)-1\)
Mà \(x+y=0\)
\(\Leftrightarrow M=x^3.0-y^3.0-1\)
\(\Leftrightarrow M=-1\)
Vậy ...
Thế a=-5 ; b=2 ; c=1 vào biểu thức |a+b-c| được:
|-5+2-1| = |-4| = 4
a)
\(\hept{\begin{cases}\left(x^2-9x\right)^2\ge0\\!y-2!\ge0\end{cases}\Rightarrow GTNN=10}\) đẳng thức đạt được khi y=2 và \(\orbr{\begin{cases}x=0\\x=9\end{cases}}\)
b)
cách 1: ghép tạo số hạng (x-2015)
E=x^9(x-2015)+x^8(x-2015)+....+x(x-2015)+x-1=2014 tại x=2015
hoặc
x^10-1=(x-1)(x^9+x^8+..+1) cái này cơ bản
-2014x^9-2014x-2014+2014 thêm 2014 bớt 2014
(x^9+x^8+..+1)(x-1-2014)+2014=(x-2015)(x^9+..+1)+2014=2014
x+y=1
<=> x=1-y
<=>P=(1-y)y=\(y-y^2\)
<=>P=\(\frac{1}{4}-\left(y^2-y+\frac{1}{4}\right)\)
<=>P=\(\frac{1}{4}-\left(y-\frac{1}{2}\right)^2\le\frac{1}{4}\)
=>Max của P=\(\frac{1}{4}\)<=>y=\(\frac{1}{2}\)
x+y=1
\(\Rightarrow x=1-y\)
\(\Rightarrow P=x.y=\left(1-y\right).y=y-y^2=-\left(y^2-y\right)\)
\(\Rightarrow P=-\left(y^2-2.y.\frac{1}{2}+\left(\frac{1}{2}\right)^2-\left(\frac{1}{2}\right)^2\right)\)
\(\Rightarrow P=-\left(y^2-2.y.\frac{1}{2}+\frac{1}{4}\right)+\frac{1}{4}\)
\(\Rightarrow P=-\left(y-\frac{1}{2}\right)^2+\frac{1}{4}\)
Vì :\(\left(y-\frac{1}{2}\right)^2\ge0\)
\(\Rightarrow-\left(y-\frac{1}{2}\right)^2\le0\)
\(\Rightarrow P\le\frac{1}{4}\)
\(\Rightarrow GTLN\)của\(P=\frac{1}{4}\)khi : \(y=\frac{1}{2}\)
\(\Rightarrow x=1-\frac{1}{2}=\frac{1}{2}\)
chj ko spam ạ