Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng định lí : Trong 1 tam giác cân đường phân giác ứng với cạnh đáy đồng thời là đường trung trực , đường cao.
=> AB= AC = 20cm AD vuông góc với BC và BD = CD
Vì BD + CD = BC BD + CD = 5cm
Mà BD = CD = 5/2 = 2,5 cm
Áp dụng định lí Py ‐ ta ‐ go cho tam giác vuông ABD có :
AB 2 = BD 2 + AD 2
=> 20 2 = BD 2 + 2,5 2
=> 400 = BD 2 + 6,25
=> BD 2 = 400 ‐ 6,25 = 393,75
=> BD = căn 393 ,75
#Học tốt#
A B C D 5CM 20CM
Áp dụng định lí : Ta có : BD = \(\frac{1}{3}\) AC
=> BD = \(\frac{1}{3}.20=\frac{20}{3}\)cm
a) Vì BD là tia pg giác của \(\widehat{ABC}\) (gt)
=>\(\frac{AB}{BC}=\frac{AD}{DC}\)
=>\(\frac{AB}{AB+AC}=\frac{AD}{AD+DC}\)
=> \(\frac{AB}{AB+BC}=\frac{AD}{AC}\)
=>\(\frac{20}{20+5}=\frac{AD}{20}\)
=>\(AD=\frac{20\cdot20}{20+5}=16\) cm
Có: AC=AD+DC
=>DC=AC-AD=20-16=4 cm
a) Áp dụng định lí Pytago vào ΔABC vuông tại A,ta được:
\(BC^2=AB^2+AC^2\)
\(\Leftrightarrow BC^2=6^2+8^2=100\)
hay BC=10(cm)
Vậy: BC=10cm
a, Xét tam giác BAC và tam giác BEA ta có
^B _ chung
^BAC = ^BEA = 900
Vậy tam giác BAC ~ tam giác BEA (g.g)
b, Theo định lí Pytago tam giác ABC vuông tại A
\(BC=\sqrt{AB^2+AC^2}=25cm\)
Ta có \(S_{ABC}=\dfrac{1}{2}.AB.AC;S_{ABC}=\dfrac{1}{2}.AH.BC\Rightarrow AH=\dfrac{AB.AC}{BC}=\dfrac{300}{25}=12cm\)
EZ thôi,vài đường cơ bản;gộp lại cho nó máu ! À mà tính BD chứ nhỉ ??
A B C x y x D E
Kẻ CE là phân giác góc C cắt BD tại E
Đặt EC=x thì BE=x;đặt ED=y
Áp dụng tính chất đường phân giác ta có:
\(\frac{DA}{DC}=\frac{AB}{BC}=\frac{15}{10}=\frac{3}{2}\left(cm\right)\) khi đó \(DA=3a;DC=2a\)
Ta có:\(15=AC=DA+DC=3a+2a=5a\Rightarrow a=3\)
\(\Rightarrow DA=9;DC=6\)
Dễ thấy \(\Delta EDC~\Delta CDB\left(g.g\right)\Rightarrow\frac{ED}{CD}=\frac{DC}{DB}=\frac{EC}{CB}\)
hay \(\frac{y}{6}=\frac{6}{BD}=\frac{x}{10}=\frac{x+y}{10+6}=\frac{x+y}{16}=\frac{BD}{16}\)
\(\Rightarrow BD^2=96\Rightarrow BD=\sqrt{96}\) số khá xấu,ko bt có nhầm lẫn đâu chăng ??