K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 5 2018

a) \(\Delta=\left(2m-1\right)^2-4.\left(m^2-1\right)=-4m+5\)

Phương trình có 2 nghiêm \(x_1,x_2\) khi \(\Delta\ge0\Leftrightarrow-4m+5\ge\Leftrightarrow m\le\frac{5}{4}\)

b) Theo hệ thức vi-ét ta có

\(x_1+x_2=2m-1;x_1.x_2=m^2-1\)

còn phần sau nữa bn tự làm ddi nhé

1.Cho phương trình: x2 - 2(m - 2)x + m2 -3m +5 = 0a) Giải phương trình với m = -2b) Tìm các giá trị của m để phương trình có một trong các nghiệm bằng -1c) Tìm các giá trị của m để phương trình trên có nghiệm kép2.Xác định m để mỗi cặp phương trình sau có nghiệm chunga) x2 + mx +2 = 0 và x2 +2x + m = 0b) x2 - (m+4)x + m +5 =0 và x2 - (m+2)x +m +1 = 03. Cho phương trình (m+1)x2 +4mx +4m - 1 =0a) Giải phương trình với m...
Đọc tiếp

1.Cho phương trình: x2 - 2(m - 2)x + m2 -3m +5 = 0

a) Giải phương trình với m = -2

b) Tìm các giá trị của m để phương trình có một trong các nghiệm bằng -1

c) Tìm các giá trị của m để phương trình trên có nghiệm kép

2.Xác định m để mỗi cặp phương trình sau có nghiệm chung

a) x2 + mx +2 = 0 và x2 +2x + m = 0

b) x2 - (m+4)x + m +5 =0 và x2 - (m+2)x +m +1 = 0

3. Cho phương trình (m+1)x2 +4mx +4m - 1 =0

a) Giải phương trình với m = - 2

b) Với giá trị nào của m thì phương trình có hai nghiệm phân biệt

c) Tìm m để phương trình có hai nghiệm thỏa mãn điều kiện x1 = - 2x2

4. Cho phương trình x2 - 2(m+4)x +m2 -8 =0

a) Tìm m để biểu thức A= x12 + x22 - x1 - x2 đạt giá trị nhỏ nhất

b) Tìm m để biểu thức B= x1 + x2 -3x1x2 đạt giá trị lớn nhất

c) Tìm m để biểu thức C= x12 + x22 - x1x2 đạt giá trị lớn nhất

Mong mọi người giúp mình, mình thực sự rất cần. Cảm ơn trước ạ. Làm được bài nào thì cmt ngay giúp mình ạ.

1
18 tháng 2 2021

Bài 1 : a, Thay m = -2 vào phương trình ta được : 

\(x^2+8x+4+6+5=0\Leftrightarrow x^2+8x+15=0\)

Ta có : \(\Delta=64-60=4>0\)

Vậy phương trình có 2 nghiệm phân biệt 

\(x_1=\frac{-8-2}{2}=-5;x_2=\frac{-8+2}{2}=-3\)

b, Đặt \(f\left(x\right)=x^2-2\left(m-2\right)x+m^2-3m+5=0\)

\(f\left(-1\right)=\left(-1\right)^2-2\left(m-2\right)\left(-1\right)+m^2-3m+5=0\)

\(1+2\left(m-2\right)+m^2-3m+5=0\)

\(6+2m-4+m^2-3m=0\)

\(2-m+m^2=0\)( giải delta nhé )

\(\Delta=\left(-1\right)^2-4.2=1-8< 0\)

Vậy phương trình vô nghiệm 

c, Để phương trình có nghiệm kép \(\Delta=0\)( tự giải :v )

16 tháng 4 2020

\(\Delta=\left(2m-1\right)^2-4\left(m^2-1\right)\) =  \(4m^2-4m+1-4m^2+4\)= 5-4m

theo phương trình 2 nghiệm <=> \(\Delta>0\Leftrightarrow5-4m\ge0\Leftrightarrow4m\le5m\le\frac{5}{4}\)

theo hệ thức nghiệm Vi-et ta có: \(\hept{\begin{cases}x_1+x_2=2m-1\\x_1x_2=m^2-1\end{cases}}\)

ta có: \(\left(x_1-x_2\right)^2=x_1-3x_2\)

\(\Leftrightarrow\left(x_1+x_2\right)^2-4x_1x_2=x_1-3x_2\)

<=> \(x_1-3x_2=\left(2m-1\right)^2-4\left(m^2-1\right)\)

<=> \(x_1-3x_2=4m^2-4m+1-4m^2+4\)

<=> \(x_1-3x_2=5-4m\)

ta có: \(\hept{\begin{cases}x_1+x_2=2m-1\\4x_1+4x_2=8m-4\end{cases}\Leftrightarrow\hept{\begin{cases}4x_2=6m-6\\x_1+x_2=2m-1\end{cases}}}\)

\(\Leftrightarrow\hept{\begin{cases}4x_2=6m-6\\4x_1+4x_2=8m-4\end{cases}\Leftrightarrow\hept{\begin{cases}4x_2=6m-6\\4x_1+6m-6=8m-4\end{cases}}}\)

\(\Leftrightarrow\hept{\begin{cases}4x_2=6m-6\\4x_1=2m+2\end{cases}\Leftrightarrow\hept{\begin{cases}x_2=\frac{6m-6}{4}\\x_1=\frac{2m+2}{4}\end{cases}}}\)

ta có: \(x_1x_2=m^2-1\Leftrightarrow\frac{\left(6m-2\right)\left(2m+2\right)}{16}=m^2-1\)

\(\Leftrightarrow\frac{12m^2+12m-12m-12}{16}=m^2-1\Leftrightarrow\frac{12m^2-12}{16}=m^2-1\)

\(\Leftrightarrow12m^2-12=16\left(m^2-1\right)\Leftrightarrow12m^2-12=16m^2-16\)

\(\Leftrightarrow4m^2-4=0\Leftrightarrow4m^2=4\Leftrightarrow m=\pm1\left(tmđk\right)\)

Vậy \(m=\pm1\)thì \(\left(x_1-x_2\right)^2=x_1-3x_2\)

31 tháng 3 2019

a, Có \(\Delta'=m^2+1>0\)

Nên pt luôn có 2 nghiệm phân biệt (Không phải nghiệm trái dấu nhá)

Giải thích vì sao ko có nghiệm trái dâu : 

 Theo Vi-ét có \(\hept{\begin{cases}S=x_1+x_2=-1\\P=x_1.x_2=2m\end{cases}}\)

Vì tích bằng 2m chưa biết âm hay dương nên ko thể KL được

b, Ta có \(\left(x_1-x_2\right)^2+3x_1x_2=7\)

\(\Leftrightarrow\left(x_1+x_2\right)^2-x_1x_2=7\)

\(\Leftrightarrow1-2m=7\)

\(\Leftrightarrow m=-3\)

1 tháng 4 2019

Bạn Incur nhầm vi ét rồi ạ.

\(x^2-2mx-1=0\)

a, \(\Delta'=m^2+1>0\Rightarrow\)Phương trình luôn có hai nghiệm phân biệt.

Ta thấy a.c = 1. (-1)= - 1 <0

Suy ra luôn có nghiệm trái dấu.

b, Theo vi ét ta có: \(\hept{\begin{cases}x_1+x_2=2m\\x_1x_2=-1\end{cases}}\)

\((x_1-x_2)^2+3x_1x_2=7\Leftrightarrow\left(x_1+x_2\right)^2-x_1x_2=7\)

\(\Leftrightarrow4m^2+1=7\Leftrightarrow m^2=\frac{3}{2}\Leftrightarrow m=\pm\frac{\sqrt{6}}{2}\)

21 tháng 5 2016

Hoa Sinh Thcs Gia Thuy