K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 1 2016

ai giỏi hình giải giúp mình đi

25 tháng 4 2016

Dễ dàng chứng minh bất đẳng thức phụ : 1a+1b≥4a+b∀a;b>01a+1b≥4a+b∀a;b>0

Và p−a;p−b;p−c>0p−a;p−b;p−c>0 theo bất đẳng thức trong tam giác.

Áp dụng bất đẳng thức phụ vừa chứng minh, ta có:

1p−a+1p−b≥42p−a−b=4c1p−a+1p−b≥42p−a−b=4c (1)(1)

1p−b+1p−c≥42p−b−c=4a1p−b+1p−c≥42p−b−c=4a (2)(2)

1p−c+1p−a≥42p−c−a=4b1p−c+1p−a≥42p−c−a=4b (3)(3)

Cộng 1;2;31;2;3 vế theo vế, ta được:

2(1p−a+1p−c+1p−c)≥4(1a+1b+1c)2(1p−a+1p−c+1p−c)≥4(1a+1b+1c)

25 tháng 4 2016

. Áp dụng BĐT Schwarz cho 3 số trên là ra thoy =))

26 tháng 4 2017

C đã làm được chưa giải giúp mình vs

20 tháng 2 2018

a) Áp dụng BĐT \(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\) ta có: 

\(\frac{1}{p-a}+\frac{1}{p-b}\ge\frac{4}{2p-a-b}=\frac{4}{a+b+c-a-b}=\frac{4}{c}\left(p=\frac{a+b+c}{2}\right)\)

Tương tự rồi cộng theo vế:

\(2VT\ge\frac{4}{a}+\frac{4}{b}+\frac{4}{c}=2VP\Leftrightarrow VT\ge VP\)

Dấu "=" khi \(a=b=c\)

b)sai đề

14 tháng 4 2018

Do p là nửa chu vi tam giác nên \(2p=a+b+c\)

Ta có bổ đề sau: \(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\Leftrightarrow\frac{x+y}{xy}\ge\frac{4}{x+y}\Leftrightarrow\left(x+y\right)^2\ge4xy\)

\(\Leftrightarrow x^2+2xy+y^2\ge4xy\Leftrightarrow x^2-2xy+y^2\ge0\Leftrightarrow\left(x-y\right)^2\ge0\)(luôn đúng)

Áp dụng vào bài toán: 

\(\frac{1}{p-a}+\frac{1}{p-b}\ge\frac{4}{p-a+p-b}=\frac{4}{2p-a-b}=\frac{4}{c}\)

Tương tự: \(\frac{1}{p-b}+\frac{1}{p-c}\ge\frac{4}{a},\)\(\frac{1}{p-c}+\frac{1}{p-a}\ge\frac{4}{b}\)

\(\Rightarrow2\left(\frac{1}{p-a}+\frac{1}{p-b}+\frac{1}{p-c}\right)\ge\frac{4}{a}+\frac{4}{b}+\frac{4}{c}=4\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)

\(\Leftrightarrow\frac{1}{p-a}+\frac{1}{p-b}+\frac{1}{p-c}\ge2\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)(đpcm)

Dấu "=" xảy ra khi a=b=c.

6 tháng 3 2016

áp dụng BĐT 1/x+1/y>=4/x+y ấy

12 tháng 6 2020

Bài làm:

Ta có: \(a+b^2+c^3=\left(a+\frac{1}{a}\right)+\left(b^2+\frac{1}{b}+\frac{1}{b}\right)+\left(c^3+\frac{1}{c}+\frac{1}{c}+\frac{1}{c}\right)-\left(\frac{1}{a}+\frac{2}{b}+\frac{3}{c}\right)\)

\(\ge2.1+3.1+4.1-6=3\)

Dấu "=" <=> \(\hept{\begin{cases}a^2=1\\b^3=1\\c^4=1\end{cases}\Rightarrow a=b=c=1}\)

Học tốt!!!!