K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
14 tháng 3 2018

Lời giải:

Đặt \(\sqrt[3]{1+\frac{\sqrt{84}}{9}}=a; \sqrt[3]{1-\frac{\sqrt{84}}{9}}=b\)

Khi đó:

\(a^3+b^3=1+\frac{\sqrt{84}}{9}+1-\frac{\sqrt{84}}{9}=2\)

\(ab=\sqrt[3]{\left(1+\frac{\sqrt{84}}{9}\right)\left(1-\frac{\sqrt{84}}{9}\right)}=\sqrt[3]{1-\frac{84}{81}}=\frac{-1}{3}\)

Suy ra:

\(D^3=(a+b)^3=a^3+b^3+3ab(a+b)=2+3.\frac{-1}{3}.D\)

\(\Leftrightarrow D^3=2-D\Leftrightarrow D^3+D-2=0\)

\(\Leftrightarrow D^2(D-1)+D(D-1)+2(D-1)=0\)

\(\Leftrightarrow (D-1)(D^2+D+2)=0\)

Dễ thấy \(D^2+D+2>0\Rightarrow D-1=0\Leftrightarrow D=1\)

Vậy $D$ là một số nguyên.

30 tháng 6 2021

a) \(\text{2}\sqrt{\text{18}}-9\sqrt{50}+3\sqrt{8}\)

\(\text{6}\sqrt{\text{2}}-45\sqrt{2}+6\sqrt{2}\)

\(-33\sqrt{2}\)

30 tháng 6 2021

b) = \(7-2.\sqrt{7}.\sqrt{3}+3+7.2\sqrt{21}\)

\(10-2\sqrt{21}+14\sqrt{21}\)

\(10+12\sqrt{21}\)

bài 1: 

a: Ta có: \(2\sqrt{18}-9\sqrt{50}+3\sqrt{8}\)

\(=6\sqrt{2}-45\sqrt{2}+6\sqrt{2}\)

\(=-33\sqrt{2}\)

b: Ta có: \(\left(\sqrt{7}-\sqrt{3}\right)^2+7\sqrt{84}\)

\(=10-2\sqrt{21}+14\sqrt{21}\)

\(=12\sqrt{21}+10\)

Bài 2: 

a: Ta có: \(\sqrt{\left(2x+3\right)^2}=8\)

\(\Leftrightarrow\left|2x+3\right|=8\)

\(\Leftrightarrow\left[{}\begin{matrix}2x+3=8\\2x+3=-8\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{5}{2}\\x=-\dfrac{11}{2}\end{matrix}\right.\)

b: Ta có: \(\sqrt{9x}-7\sqrt{x}=8-6\sqrt{x}\)

\(\Leftrightarrow4\sqrt{x}=8\)

hay x=4

c: Ta có: \(\sqrt{9x-9}+1=13\)

\(\Leftrightarrow3\sqrt{x-1}=12\)

\(\Leftrightarrow x-1=16\)

hay x=17

29 tháng 10 2017

=A=\(\sqrt[3]{1+\dfrac{\sqrt{84}}{9}}+\sqrt[3]{1-\dfrac{\sqrt{84}}{9}}\)

có (a+b)3=a3+3a2b+3ab2+b3

=a3+b3+3ab(a+b)

Ad ta có

A3=2+3(\(\sqrt[3]{1+\dfrac{\sqrt{84}}{9}}+\sqrt[3]{1-\dfrac{\sqrt{84}}{9}}\)) .

(\(\sqrt[3]{\left(1+\dfrac{\sqrt{84}}{9}\right)\left(1-\dfrac{\sqrt{84}}{9}\right)}\))

A3=2+3A\(\sqrt[3]{1-\dfrac{84}{81}}\)

A3=2-A

=>A3+A-2=0

=>A3-A+2A-2=0

=>A(A2-1)+2(A-1)=0

=>A(A-1)(A+1)+2(A-1)=0

=>(A-1)(A2+A+2)=0

=>(A-1)(A2+2.\(\dfrac{1}{2}\)A+\(\dfrac{1}{4}\)+\(\dfrac{7}{4}\))=0

=>(A-1)((A+\(\dfrac{1}{2}\))2+\(\dfrac{7}{4}\))=0

=> A=1

hoặc (A+\(\dfrac{1}{2}\))2+\(\dfrac{7}{4}\)=0(loại)

vậy A nguyên

10 tháng 7 2018

Đặt \(A=\sqrt[3]{1+\dfrac{\sqrt{84}}{9}}+\sqrt[3]{1-\dfrac{\sqrt{84}}{9}}\)

\(\Rightarrow A^3=1+\dfrac{\sqrt{84}}{9}+1-\dfrac{\sqrt{84}}{9}+3A.\sqrt[3]{1+\dfrac{\sqrt{84}}{9}}.\sqrt[3]{1-\dfrac{\sqrt{84}}{9}}\)

\(\Leftrightarrow A^3=2+3A.\sqrt[3]{1-\dfrac{84}{81}}\)

\(\Leftrightarrow A^3=2+3A.\sqrt[3]{-\dfrac{3}{81}}=2+3A.\sqrt[3]{-\dfrac{1}{27}}\)

\(\Leftrightarrow A^3=2-A\)

\(\Leftrightarrow A^3+A-2=0\)

\(\Leftrightarrow\left(A-1\right)\left(A^2+A+2\right)=0\)

Dể thấy \(A^2+A+2=\left(A+\dfrac{1}{2}\right)^2+\dfrac{7}{4}>0\)

\(\Rightarrow A-1=0\Leftrightarrow A=1\)

Vậy \(\sqrt[3]{1+\dfrac{\sqrt{84}}{9}}+\sqrt[3]{1-\dfrac{\sqrt{84}}{9}}\) là số nguyên (đpcm)

d) Ta có: \(D=\left(\dfrac{5\sqrt{x}-6}{x-9}-\dfrac{2}{\sqrt{x}+3}\right):\left(1+\dfrac{6}{x-9}\right)\)

\(=\dfrac{5\sqrt{x}-6-2\left(\sqrt{x}-3\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}:\dfrac{x-9+6}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\)

\(=\dfrac{5\sqrt{x}-6-2\sqrt{x}+6}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\cdot\dfrac{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}{x-3}\)

\(=\dfrac{3\sqrt{x}}{x-3}\)

f) Ta có: \(\left(\dfrac{3}{\sqrt{1+x}}+\sqrt{1-x}\right):\left(\dfrac{3}{\sqrt{1-x^2}}+1\right)\)

\(=\dfrac{3+\sqrt{1-x^2}}{\sqrt{1+x}}:\dfrac{3+\sqrt{1-x^2}}{\sqrt{1-x^2}}\)

\(=\dfrac{\sqrt{1-x^2}}{\sqrt{1+x}}=\sqrt{1-x}\)

8 tháng 6 2021

a,\(\left(\sqrt{1\dfrac{9}{16}}-\sqrt{\dfrac{9}{16}}\right):5=\left(\sqrt{\dfrac{25}{16}}-\dfrac{3}{4}\right):5=\left(\dfrac{5}{4}-\dfrac{3}{4}\right):5\)

\(=\dfrac{1}{2}:5=\dfrac{1}{10}\)

b,\(\left(\sqrt{3}-2\right)^2\left(\sqrt{3}+2\right)^2=\left[\left(\sqrt{3}-2\right)\left(\sqrt{3}+2\right)\right]^2\)

\(=\left[3-4\right]^2=1\)

c,\(\left(11-4\sqrt{3}\right)\left(11+4\sqrt{3}\right)=11^2-\left(4\sqrt{3}\right)^2\)

\(=121-48=73\)

d,\(\left(\sqrt{2}-1\right)^2-\dfrac{3}{2}\sqrt{\left(-2\right)^2}+\dfrac{4\sqrt{2}}{5}+\sqrt{1\dfrac{11}{25}}.\sqrt{2}\)

\(=2-2\sqrt{2}+1-3+\dfrac{4\sqrt{2}}{5}+\sqrt{\dfrac{36}{25}.2}\)

\(=-2\sqrt{2}+\dfrac{4\sqrt{2}+6\sqrt{2}}{5}\)

\(=-2\sqrt{2}+\dfrac{10\sqrt{2}}{5}=-2\sqrt{2}+2\sqrt{2}=0\)

e,\(\left(1+\sqrt{2021}\right)\sqrt{2022-2\sqrt{2021}}\)

\(=\left(1+\sqrt{2021}\right)\sqrt{2021-2\sqrt{2021}.1+1}\)

\(=\left(1+\sqrt{2021}\right)\sqrt{\left(\sqrt{2021}-1\right)^2}\)

\(=\left(1+\sqrt{2021}\right)\left(\sqrt{2021}-1\right)\)

\(=\sqrt{2021}-1+\sqrt{2021^2}-\sqrt{2021}=2020\)