Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án D
Điều kiện 40 < x < 60
Vậy x cần tìm theo yêu cầu đề là các số nguyên dương chạy từ 41 đến 59; trừ giá trị 50. Có tất cả 18 giá trị thỏa mãn.
\(1\le1+\sqrt{1-x^2}\le2\Rightarrow3\le3^{1+\sqrt{1-x^2}}\le9\)
Đặt \(3^{1+\sqrt{1-x^2}}=t\Rightarrow t\in\left[3;9\right]\)
Phương trình trở thành: \(t^2-\left(m+2\right)t+2m+1=0\)
\(\Leftrightarrow t^2-2t+1=m\left(t-2\right)\Leftrightarrow m=\dfrac{t^2-2t+1}{t-2}\)
Xét hàm \(f\left(t\right)=\dfrac{t^2-2t+1}{t-2}\) trên \(\left[3;9\right]\)
\(f'\left(t\right)=\dfrac{t^2-4t+3}{\left(t-2\right)^2}\ge0\) ; \(\forall t\in\left[3;9\right]\Rightarrow f\left(t\right)\) đồng biến trên khoảng đã cho
\(\Rightarrow f\left(3\right)\le f\left(t\right)\le f\left(9\right)\Rightarrow4\le m\le\dfrac{64}{7}\)
Có 6 giá trị nguyên của m
Cho e hỏi tại sao điều kiện lại nằm trong khoảng [1,2] vậy ạ ?
Đáp án là B
Phương trình tương đương với
Xét hàm Ta có đồng biến
Mà suy ra
Đặt u = cosx,
Khi đó phương trình trở thành
Xét
Bảng biến thiên
Dựa vào bảng biến thiên suy ra phương trình có nghiệm khi
ĐKXĐ: \(x>0\)
\(x^{log_25}=t\Rightarrow25^{log_2x}=\left(5^{log_2x}\right)^2=\left(x^{log_25}\right)^2=t^2\)
\(x_1x_2=4\Rightarrow t_1t_2=\left(x_1x_2\right)^{log_25}=4^{log_25}=25\)
\(\left(m+1\right)t^2+\left(m-2\right)t-2m+1=0\) (1)
Pt có 2 nghiệm pb \(\Rightarrow\) (1) có 2 nghiệm dương pb
\(\Rightarrow\left\{{}\begin{matrix}\Delta=\left(m-2\right)^2-4\left(m+1\right)\left(-2m+1\right)>0\\t_1+t_2=\dfrac{2-m}{m+1}>0\\t_1t_2=\dfrac{-2m+1}{m+1}>0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}m\ne0\\-1< m< \dfrac{1}{2}\end{matrix}\right.\)
Ủa làm đến đây mới thấy kì kì, chỉ riêng hệ điều kiện này đã ko tồn tại m nguyên rồi, chưa cần điều kiện \(x_1x_2=4\)
cái này mk làm 1 nghiệm t =1 xong thay tìm m, có vẻ cũng ko dài lắm :))))
Đáp án B
Điều kiện
Phương trình đã cho tương đương với:
Đặt t = x 2 ≥ 1 , theo bài ra ta có 1 ≤ x 1 < x 2 ≤ 3 ⇔ 1 ≤ x 1 2 < x 2 2 ≤ 9 ⇒ t ∈ 1 ; 9
Xét hàm số f ( t ) = 2 - ( t - 1 ) . log ( t + 1 ) trên đoạn 1 ; 9 .
Ta có
⇒ Hàm số f ( t ) đồng biến trên đoạn 1 ; 9 . Khi đó f ( 1 ) ≤ f ( t ) ≤ 9 hay 1 ≤ f ( t ) ≤ 4 .
Đặt u = 2 ( x 2 - 1 ) . log ( x 2 + 1 ) ⇒ u ∈ 0 ; 4 . Khi đó phương trình * trở thành u 2 - 2 m . u + 2 m + 8 = 0 1 .
Nhận thấy u = 1 không phải là nghiệm của phương trình 1 . Với u ≠ 1 thì phương trình 1 tương đương với u 2 + 8 = 2 m ( u - 1 ) ⇔ 2 m = u 2 + 8 u - 1 2
Xét hàm số g u = u 2 + 8 u - 1 trên đoạn 0 ; 4 \ 1 .
Ta có g ' u = u 2 - 2 u - 8 u - 1 2 ; g ' ( u ) = 0 ⇔ [ u = - 2 u = 4 . Mà u ∈ 0 ; 4 \ 1 nên u = 4 .
Mặt khác, có g ( 0 ) = - 8 ; g ( 4 ) = 8 ; lim x → 1 - g ( u ) = - ∞ ; lim x → 1 + g ( u ) = = ∞ .
Bảng biến thiên:
Yêu cầu bài toán ⇔ Phương trình 2 có nghiệm duy nhất trên đoạn 0 ; 4 \ 1 .
Suy ra
Mặt khác m ∈ ℤ , m ∈ - 2017 ; 2017 nên suy ra
Vậy có tất cả 2017 - 4 + 1 + - 4 + 2017 + 1 = 4028 giá trị m nguyên thỏa mãn bài toán.