K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

QT
Quoc Tran Anh Le
Giáo viên
22 tháng 9 2023

Từ hàng thứ 5 trở đi, số \(3^{r_n}\) càng gần với giá trị 4,728... Làm tròn đến hàng phần trăm, ta được \(3^{\sqrt{2}}\approx4,73\).

a: \(3^{r1}=3^1=3\)

\(3^{r2}\simeq3^{1.4}\simeq\text{4 , 655536722}\)

\(3^{r3}\simeq3^{1.41}\simeq\text{4 , 706965002}\)

\(3^{r4}=3^{1.4142}\simeq4,\text{72873393}\)

\(3^{\sqrt{2}}=\text{4 , 728804388}\)

b: \(\left|3^{\sqrt{2}}-3^{r1}\right|=\text{4 , 728804388 − 3 = 1 , 728804388 }\)

\(\left|3^{\sqrt{2}}-3^{r2}\right|=\text{4,728804388-4,655536722=0,07326766609}\)

\(\left|3^{\sqrt{2}}-3^{r3}\right|=\text{4,728804388 − 4,706965002 = 0,02183938612 }\)

\(\left|3^{\sqrt{2}}-3^{r4}\right|=\text{4,728804388−4,72873393=0,0000704576662}\)

=>Khi n càng tăng dần thì sai số tuyệt đối càng giảm

a: \(r_6=3^{\text{1 , 414213 }}=4,7288\text{01466}\)

\(r_7=3^{\text{ 1 , 4142134}}=\text{4,728803544}\)

b: Khi \(n\rightarrow+\infty\) thì \(3^{r_n}\rightarrow3^{\sqrt{2}}\)

25 tháng 11 2023

1: \(\lim\limits_{n\rightarrow\infty}\left(\sqrt[3]{n^3+n^2+n+1}-n\right)\)

\(=\lim\limits_{n\rightarrow\infty}\dfrac{n^3+n^2+n+1-n^3}{\sqrt[3]{\left(n^3+n^2+n+1\right)^2}+n\cdot\sqrt[3]{n^3+n^2+n+1}+n^2}\)

\(=\lim\limits_{n\rightarrow\infty}\dfrac{n^2+n+1}{n^2\cdot\sqrt[3]{\left(1+\dfrac{1}{n}+\dfrac{1}{n^2}+\dfrac{1}{n^3}\right)^2}+n^2\cdot\sqrt[3]{1+\dfrac{1}{n}+\dfrac{1}{n^2}+\dfrac{1}{n^3}}+n^2}\)

\(=\lim\limits_{n\rightarrow\infty}\dfrac{1+\dfrac{1}{n}+\dfrac{1}{n^2}}{\sqrt[3]{\left(1+\dfrac{1}{n}+\dfrac{1}{n^2}+\dfrac{1}{n^3}\right)^2}+\sqrt[3]{1+\dfrac{1}{n}+\dfrac{1}{n^2}+\dfrac{1}{n^3}}+1}\)

\(=\dfrac{1}{1+1+1}=\dfrac{1}{3}\)

2: \(\lim\limits_{n\rightarrow\infty}\left(\sqrt{n^2+n}-\sqrt{n^2-n+1}\right)\)

\(=\lim\limits_{n\rightarrow\infty}\dfrac{n^2+n-n^2+n-1}{\sqrt{n^2+n}+\sqrt{n^2-n+1}}\)

\(=\lim\limits_{n\rightarrow\infty}\dfrac{2n-1}{\sqrt{n^2+n}+\sqrt{n^2-n+1}}\)

\(=\lim\limits_{n\rightarrow\infty}\dfrac{2-\dfrac{1}{n}}{\sqrt{1+\dfrac{1}{n}}+\sqrt{1-\dfrac{1}{n}+\dfrac{1}{n^2}}}\)

\(=\dfrac{2}{1+1}=\dfrac{2}{2}=1\)

NV
7 tháng 2 2021

Ta sẽ chứng minh dãy bị chặn trên bởi 2

Thật vậy, với \(n=1;2\) thỏa mãn

Giả sử điều đó cũng đúng với \(n=k\) , tức \(u_k< 2\)

Ta cần chứng minh \(u_{k+1}< 2\)

Ta có: \(u_{k+1}=\sqrt{3u_k-2}< \sqrt{3.2-2}=2\) (đpcm)

Tương tự, ta cũng quy nạp được dễ dàng \(u_n>1\)

Mặt khác: \(u_n-u_{n-1}=\sqrt{3u_{n-1}-2}-u_{n-1}=\dfrac{3u_{n-1}-2-u_{n-1}^2}{\sqrt{3u_{n-1}-2}+u_{n-1}}\)

\(=\dfrac{\left(2-u_{n-1}\right)\left(u_{n-1}-1\right)}{\sqrt{3u_{n-1}-2}+u_{n-1}}>0\)

\(\Rightarrow u_n>u_{n-1}\Rightarrow\) dãy tăng

Dãy tăng và bị chặn trên nên có giới hạn hữu hạn.

Gọi giới hạn đó là k thì:

\(k=\sqrt{3k-2}\Leftrightarrow k=2\)

NV
10 tháng 2 2020

\(\left|0,992\right|< 1\) ; \(\left|0,866\right|< 1\) nên \(lim\left(u_n\right)=lim\left(r_n\right)=0\)

18 tháng 2 2021

a/ \(=\lim\limits_{x\rightarrow-\infty}\dfrac{x^2+1-x^2}{\sqrt{x^2+1}-x}+\lim\limits_{x\rightarrow-\infty}\dfrac{3x^3-1-x^3}{\sqrt[3]{\left(3x^3-1\right)^2}+x\sqrt[3]{3x^3-1}+x^2}\)

\(=\lim\limits_{x\rightarrow-\infty}\dfrac{\dfrac{1}{x}}{-\sqrt{\dfrac{x^2}{x^2}+\dfrac{1}{x^2}}-\dfrac{x}{x}}+\lim\limits_{x\rightarrow-\infty}\dfrac{-\dfrac{1}{x^2}}{\dfrac{\sqrt[3]{\left(3x^3-1\right)^2}}{x^2}+\dfrac{x\sqrt[3]{3x^3-1}}{x^2}+\dfrac{x^2}{x^2}}=0\)

b/ \(=\lim\limits_{x\rightarrow+\infty}\dfrac{x^2+x-x^2}{\sqrt{x^2+x}+x}+\lim\limits_{x\rightarrow+\infty}\dfrac{x^3-x^3+x^2}{x^2+x\sqrt[3]{x^3-x^2}+\sqrt[3]{\left(x^3-x^2\right)^2}}\)

\(=\lim\limits_{x\rightarrow+\infty}\dfrac{\dfrac{x}{x}}{\sqrt{\dfrac{x^2}{x^2}+\dfrac{x}{x^2}}+\dfrac{x}{x}}+\lim\limits_{x\rightarrow+\infty}\dfrac{\dfrac{x^2}{x^2}}{\dfrac{x^2}{x^2}+\dfrac{x\sqrt[3]{x^3-x^2}}{x^2}+\dfrac{\sqrt[3]{\left(x^3-x^2\right)^2}}{x^2}}\)

\(=\dfrac{1}{2}+\dfrac{1}{3}=\dfrac{5}{6}\)

c/ \(=\lim\limits_{x\rightarrow+\infty}\dfrac{2x-1-2x-1}{\sqrt[3]{\left(2x-1\right)^2}+\sqrt[3]{4x^2-1}+\sqrt[3]{\left(2x+1\right)^2}}\)

\(=\lim\limits_{x\rightarrow+\infty}\dfrac{-\dfrac{2}{x^{\dfrac{2}{3}}}}{\dfrac{\sqrt[3]{\left(2x-1\right)^2}}{x^{\dfrac{2}{3}}}+\dfrac{\sqrt[3]{4x^2-1}}{x^{\dfrac{2}{3}}}+\dfrac{\sqrt[3]{\left(2x+1\right)^2}}{x^{\dfrac{2}{3}}}}=0\)

Check lai ho minh nhe :v

2 tháng 3 2021

cảm ơn bạn nhé , giờ mới trả lời được bucminh

 

18 tháng 2 2021

\(u_2=\sqrt{2}\left(2+3\right)-3=5\sqrt{2}-3\)

\(u_3=\sqrt{\dfrac{3}{2}}.5\sqrt{2}-3=5\sqrt{3}-3\)

\(u_4=\sqrt{\dfrac{4}{3}}.5\sqrt{3}-3=5\sqrt{4}-3\)

....

\(\Rightarrow u_n=5\sqrt{n}-3\)

\(\Rightarrow\lim\limits\dfrac{u_n}{\sqrt{n}}=\lim\limits\dfrac{5\sqrt{n}-3}{\sqrt{n}}=5\)

12 tháng 3 2021

hic ai giúp em với ạ :((