K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 7 2021

a) \(\sqrt{-\dfrac{2t}{3}}.\sqrt{-\dfrac{3t}{8}}=\sqrt{-\dfrac{2t}{3}.\left(-\dfrac{3t}{8}\right)}=\sqrt{\dfrac{1}{4}t^2}=\left|\dfrac{1}{2}t\right|=-\dfrac{1}{2}t\left(t< 0\right)\)

b) \(\sqrt{\dfrac{2a^3}{b}}:\sqrt{\dfrac{ab^3}{8}}=\sqrt{\dfrac{2a^3}{b}:\dfrac{ab^3}{8}}=\sqrt{\dfrac{2a^3}{b}.\dfrac{8}{ab^3}}=\sqrt{16\dfrac{a^2}{b^4}}\)

\(=\left|4\dfrac{a}{b^2}\right|=-\dfrac{4a}{b^2}\left(a< 0\right)\)

c) \(\sqrt{x-\sqrt{x^2-1}}.\sqrt{x+\sqrt{x^2-1}}=\sqrt{\left(x-\sqrt{x^2-1}\right)\left(x+\sqrt{x^2-1}\right)}\)

\(=\sqrt{x^2-\left(x^2-1\right)}=\sqrt{1}=1\)

4 tháng 8 2021

Zcbhbggbbbknbjj

Fhhgkjgh

 

 

Yhhh

 

 

 

 

 

 

 

3:

b: x1^2+x2^2=12

=>(x1+x2)^2-2x1x2=12

=>(2m+2)^2-4m=12

=>4m^2+4m+4=12

=>m^2+m+1=3

=>(m+2)(m-1)=0

=>m=1;m=-2

2:

b: =>|x1|-|x2|=m+3-|-1|=m+2

=>x1^2+x2^2-2|x1x2|=m+2

=>(x1+x2)^2-2x1x2-2|x1x2|=m+2

=>(2m)^2-2(-1)-2|-1|=m+2

=>4m^2-m-2=0

=>m=(1+căn 33)/8; m=(1-căn 33)/8

29 tháng 9 2019

\(A=2\sqrt{1}+2\sqrt{3}+...+2\sqrt{21}\)

\(A=2.\left(\sqrt{1}+\sqrt{3}+...+\sqrt{21}\right)\)

\(B=2\sqrt{2}+2\sqrt{4}+....2\sqrt{22}\)

\(B=2.\left(\sqrt{2}+\sqrt{4}+...+\sqrt{22}\right)\)

Có \(\sqrt{1}+\sqrt{3}+...+\sqrt{21}\) Có 11 số hạng.

\(\sqrt{2}+\sqrt{4}+...+\sqrt{22}\) Có 11 số hạng.

Mà \(\hept{\begin{cases}\sqrt{1}< \sqrt{2}\\....\\\sqrt{21}< \sqrt{22}\end{cases}}\)

=> \(2.\left(\sqrt{1}+\sqrt{3}+...+\sqrt{21}\right)< 2.\left(\sqrt{2}+\sqrt{4}+...+\sqrt{22}\right)\)

\(\Rightarrow A< B\)

4 tháng 11 2021

fffffffffffffff

30 tháng 12 2022

a: AB=2*OA=6cm

b: \(MI=\sqrt{3^2-2^2}=\sqrt{5}\left(cm\right)\)

=>\(MN=2\sqrt{5}\left(cm\right)\)

Đề 1:

Câu 1: A

Câu 2: A

Đề 2: 

Câu 1: B

Câu 2: C

5 tháng 8 2021

22,

1, Đặt √(3-√5) = A

=> √2A=√(6-2√5)

=> √2A=√(5-2√5+1)

=> √2A=|√5 -1|

=> A=\(\dfrac{\sqrt{5}-1}{\text{√2}}\)

=> A= \(\dfrac{\sqrt{10}-\sqrt{2}}{2}\)

2, Đặt √(7+3√5) = B

=> √2B=√(14+6√5)

 => √2B=√(9+2√45+5)

=> √2B=|3+√5|

=> B= \(\dfrac{3+\sqrt{5}}{\sqrt{2}}\)

=> B= \(\dfrac{3\sqrt{2}+\sqrt{10}}{2}\)

3, 

Đặt √(9+√17) - √(9-√17) -\(\sqrt{2}\)=C

=> √2C=√(18+2√17) - √(18-2√17) -\(2\)

=> √2C=√(17+2√17+1) - √(17-2√17+1) -\(2\)

=> √2C=√17+1- √17+1 -\(2\)

=> √2C=0

=> C=0

26,

|3-2x|=2\(\sqrt{5}\)

TH1: 3-2x ≥ 0 ⇔ x≤\(\dfrac{-3}{2}\)

3-2x=2\(\sqrt{5}\)

-2x=2\(\sqrt{5}\) -3

x=\(\dfrac{3-2\sqrt{5}}{2}\) (KTMĐK)

TH2: 3-2x < 0 ⇔ x>\(\dfrac{-3}{2}\)

3-2x=-2\(\sqrt{5}\)

-2x=-2√5 -3

x=\(\dfrac{3+2\sqrt{5}}{2}\) (TMĐK)

Vậy x=\(\dfrac{3+2\sqrt{5}}{2}\)

 

 

 

 

 

 

6 tháng 8 2021

2, \(\sqrt{x^2}\)=12 ⇔ |x|=12 ⇔ x=12, -12

3, \(\sqrt{x^2-2x+1}\)=7

⇔ |x-1|=7 

TH1: x-1≥0 ⇔ x≥1

x-1=7 ⇔ x=8 (TMĐK)

TH2: x-1<0 ⇔ x<1

x-1=-7 ⇔ x=-6 (TMĐK)

Vậy x=8, -6

4, \(\sqrt{\left(x-1\right)^2}\)=x+3

⇔ |x-1|=x+3

TH1: x-1≥0 ⇔ x≥1

x-1=x+3 ⇔ 0x=4 (KTM)

TH2: x-1<0 ⇔ x<1

x-1=-x-3 ⇔ 2x=-2 ⇔x=-1 (TMĐK)

Vậy x=-1