K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

DD
5 tháng 10 2021

\(y=x^3-3x^2+9x+1\)

\(y'=3x^2-6x+9\)

\(y'=0\Rightarrow x^2-2x+3=0\Leftrightarrow\left(x-1\right)^2+2=0\)(vô nghiệm) 

\(y\left(-2\right)=-37,y\left(4\right)=53\)

\(max_{\left[-2,4\right]}y=max\left\{y\left(-2\right);y\left(4\right)\right\}=y\left(4\right)=53\).

NV
13 tháng 9 2021

\(f'\left(x\right)=-2sinx.cosx-2sin\left(x+m\right).cos\left(x+m\right)+2cosm\left[sinx.cos\left(m+x\right)+cosx.sin\left(m+x\right)\right]\)

\(=-sin2x-sin\left(2x+2m\right)+2cosm.sin\left(2x+m\right)\)

\(=-2sin\left(2x+m\right).cosm+2cosm.sin\left(2x+m\right)\)

\(=0\)

b. Do \(f'\left(x\right)=0\) với mọi x \(\Rightarrow f\left(x\right)\) là hàm hằng \(\Rightarrow f\left(x\right)\) nhận giá trị ko đổi trên R

11 tháng 8 2021

B, Đồ thị y thì nhìn vào dáng điệu, đồ thị y' thì chú ý trục hoành

Chọn B

20 tháng 5 2021

em cho thoả mãn đấy ạ ai thick thì em cho sờ

20 tháng 5 2021

Đù nhức nách :3

NV
27 tháng 2 2023

\(P=\left(x-y\right)+\left(y-z\right)+z+\dfrac{81}{z\left(x-y\right)\left(y-z\right)}+12\)

\(P\ge4\sqrt[4]{\left(x-y\right)\left(y-z\right).z.\dfrac{81}{z\left(x-y\right)\left(y-z\right)}}+12=24\)

\(P_{min}=24\) khi \(\left(x;y;z\right)=\left(9;6;3\right)\)

27 tháng 10

đây là những món quà mà bn sẽ nhận đc: 1: áo quần 2: tiền 3: đc nhiều người yêu quý 4: may mắn cả 5: luôn vui vẻ trong cuộc sống 6: đc crush thích thầm 7: học giỏi 8: trở nên xinh đẹp phật sẽ ban cho bn những điều này nếu cậu gửi tin nhắn này cho 25 người,

 

16 tháng 6 2019
https://i.imgur.com/gaI1ret.jpg

Phương trình hoành độ giao điểm của đường thẳng và đồ thị hàm số

Vậy đường thẳng cắt đồ thị hàm số tại hai điểm phân biệt \(A\left(0;-2\right),B\left(-1,-3\right)\)

Đáp án : B

17 tháng 4 2021

Đây là toán lớp 12 à?

dạ ko ạ,em hỏi mấy anh chị cho nhanh thôi ạ

8 tháng 6 2016

Đơn giản thôi ..tách và áp dụng tích phân từng phần là ok.\(\int\limits^{\frac{\Pi}{2}}_0x\sin\left(2x\right)dx\)  đặt \(\begin{cases}u=x\\dv=sin\left(2x\right)dx\end{cases}\) →\(\begin{cases}du=dx\\v=\int sin\left(2x\right)dx=\frac{-1}{2}cos\left(2x\right)\end{cases}\)

T1\(\frac{-1}{2}x\times cos\left(2x\right)\left|\frac{\frac{\Pi}{2}}{0}\right|^{ }\)  -- \(\int\limits^{\frac{\Pi}{2}}_{ }\frac{-1}{2}cos\left(2x\right)dx\)\(\frac{\Pi}{4}\)  + \(\left(\frac{1}{4}sin\left(2x\right)\right)\)|thế cận vô →   T1=\(\frac{\Pi}{4}\)

T2\(\int\limits x^3dx\) = \(\frac{x^4}{4}\)|| thế cận  = \(\frac{\Pi^4}{64}\)            suy ra T= \(\frac{\Pi}{4}+\frac{\Pi^4}{64}\)

1 + 12345678910 = 12345678911.

Xin lỗi mình không biết.

1 tháng 5 2019

\(1+12345678910\)

\(=12345678911\)

30 tháng 12 2019

Tacó

\(\int\frac{1+xsin\left(x\right)}{cos^2\left(x\right)}dx\\ =\int\frac{1}{cos^2x}dx+\int xd\left(\frac{1}{cosx}\right)\\ =tanx+\frac{x}{cosx}-\int\frac{1}{cosx}dx\\ =tanx+\frac{x}{cosx}-\int\frac{1}{1-sin^2x}d\left(sinx\right)\\ =KQ\)

Chỗ cos hay tan với x tự cách nha. Mình đang ôn thi nên kiểu này quên nhanh lắm, sai thì thông cảm nhé

AH
Akai Haruma
Giáo viên
30 tháng 12 2019

Lời giải:
\(P=\int \frac{1+x\sin x}{\cos ^2x}dx=\int \frac{1}{\cos ^2x}dx+\int \frac{x\sin x}{\cos ^2x}dx\)

Ta thấy:

\(\int \frac{1}{\cos ^2x}dx=\tan x+c\)

Dựa vào công thức $u,v$:

\( \int \frac{x\sin x}{\cos ^2x}dx\)\(=x\sin x\tan x-\int \tan x(\sin x+x\cos x)dx\)

\(=x\sin x\tan x-\int \tan x\sin xdx-\int x\tan x\cos xdx\)

\(=x\sin x\tan x-\int \frac{\sin ^2x}{\cos x}dx-\int x\sin xdx\)

Trong đó:

\(\int \frac{\sin ^2x}{\cos x}=\int \frac{\sin ^2xd(\sin x)}{\cos ^2x}=\int \frac{\sin ^2xd(\sin x)}{1-\sin ^2x}=\int \frac{t^2dt}{1-t^2}=\int (-1+\frac{1}{1-t^2})dt\)

\(=-\int dt+\int \frac{dt}{1-t^2}=-\int dt+\frac{1}{2}\int (\frac{1}{1-t}+\frac{1}{1+t})dt\)

\(=-t-\frac{1}{2}\ln |t-1|+\frac{1}{2}\ln |t+1|+c=-\sin x-\frac{1}{2}\ln |\sin x-1|+\frac{1}{2}\ln |\sin x+1|+c\)

Và:

\(\int x\sin xdx=x(-\cos x)+\int \cos xdx=-x\cos x+\sin x+c\)

Do đó:

\(\int \frac{x\sin x}{\cos ^2x}dx=x\sin x\tan x+\frac{1}{2}\ln |\frac{\sin x-1}{\sin x+1}|+x\cos x+c\)

\(\Rightarrow P=\tan x+x\sin x\tan x+\frac{1}{2}\ln |\frac{\sin x-1}{\sin x+1}|+x\cos x+c\)