K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 11 2017

Trong tam giác DKL vuông tại D với đường cao DC. Theo định lí 4, ta có:

Để học tốt Toán 9 | Giải bài tập Toán 9

không đổi khi I thay đổi trên cạnh AB. (đpcm)

a: \(\widehat{ADE}+\widehat{EDC}=90^0\)

\(\widehat{KDC}+\widehat{EDC}=90^0\)

Do đó: \(\widehat{ADE}=\widehat{KDC}\)

Xét ΔADE vuông tại A và ΔCDK vuông tại C có

DA=DC

\(\widehat{ADE}=\widehat{KDC}\)

Do đó: ΔADE=ΔCDK

=>DE=DK

Xét ΔDEK có

\(\widehat{EDK}=90^0\)

DE=DK

Do đó: ΔDEK vuông cân tại D

b: Xét ΔDFK vuông tại D có DC là đường cao

nên \(\dfrac{1}{DK^2}+\dfrac{1}{DF^2}=\dfrac{1}{DC^2}\)

=>\(\dfrac{1}{DE^2}+\dfrac{1}{DF^2}=\dfrac{1}{DC^2}\) không đổi

14 tháng 7 2015

 a) Xét hai tam giác IAD và LCD có: 
+DA=DC 
+ Góc IAD=Góc LCD=90 (độ) 
+ Góc ADI=Góc LDC (cùng phụ với góc IDC) 
Hai tam giác đó bằng nhau, nên DI=DL (tam giác IDL câ tại D) 
b) Theo câu a) ta có DI=DL 
nên: 1/DI.DI+1/DK.DK=1/DL.DL+1/DK.DK 
DL và DK là hai cạnh góc vuông của tam giác vuông KDL, đường cao DC, áp dụng hệ thức lượng trong tam giác vuông (nghịch đảo bình phương đường cao, bằng tổng nghịch đảo hai cạnh góc vuông) 
ta có: 1/DL.DL+1/DK.DK=1/DC.DC=1/a.a (a: cạnh hình vuông, không đổi)

tick đúng cho mih nhé

27 tháng 8 2016

Đây là đề bài của e chị ạ, chị làm giúp em nha:

   Cho hình vuông ABCD và điểm I ko thay đổi giữa A và B.Tia DI cắt BC tại E, đường thẳng qua D vuông góc với DE cắt BC tại F.

a; Chứng minh tam giác DIF vuông cân

28 tháng 4 2017

Để học tốt Toán 9 | Giải bài tập Toán 9

a) Xét hai tam giác vuông ADI và CDL có:

AD = CD (cạnh hình vuông)

Để học tốt Toán 9 | Giải bài tập Toán 9

Nên ΔADI = ΔCDL (cạnh góc cuông và góc nhọn)

Suy ra DI = DL hay ΔDIL cân. (đpcm)

b) Trong tam giác DKL vuông tại D với đường cao DC. Theo định lí 4, ta có:

Để học tốt Toán 9 | Giải bài tập Toán 9

không đổi khi I thay đổi trên cạnh AB. (đpcm)

AH
Akai Haruma
Giáo viên
17 tháng 9 2017

Lời giải:

Chưa hiểu chức năng của điểm F ở đây là gì?

Vì \(AD\parallel EB\Rightarrow \frac{DI}{IE}=\frac{AI}{IB}\) (Định lý Thales)

\(\Rightarrow \frac{DI}{DE}=\frac{AI}{AB}\Leftrightarrow \frac{DI^2}{DE^2}=\frac{AI^2}{AB^2}=\frac{DI^2-AD^2}{AB^2}\) (Định lý Pitago)

\(\Leftrightarrow \frac{DI^2}{DE^2}=\frac{DI^2}{AB^2}-1\Leftrightarrow \frac{DI^2}{DE^2}+1=\frac{DI^2}{AB^2}\)

Chia hai vế cho \(DI^2\) thu được:

\(\frac{1}{DE^2}+\frac{1}{DI^2}=\frac{1}{AB^2}=\text{constant}\)

Do đó \(\frac{1}{DI^2}+\frac{1}{DE^2}\) không phụ thuộc vào vị trí điểm $I$

17 tháng 9 2017

đây là bài tương tự của bài 9 SGK Toán 9 trang 70 :v trên mạng chắc chắn có giải rồi >///< bn tự tham khảo nhé ~~!

30 tháng 8 2015

Xét Tam giác ADI vuông tại A và tam giác CDL vuông tại C có :

                    AD = DC ( ABCD là HV)

                     ADI = CDL ( cùng phụ KDC ) 

=> Tam giác ADI = CDL ( c.g.v - g.n.k )

 => DI = DL => tam giác DIL cân tại I 

b)

TAm giác DCL vuông tại D , theo HTL ;

     \(\frac{1}{DC^2}=\frac{1}{DK^2}+\frac{1}{DL^2}\) 

DI = DL => \(\frac{1}{DC^2}=\frac{1}{DK^2}+\frac{1}{DI^2}\)

Vì DC không đổi => \(\frac{1}{DC^2}\)  ko đổi 

=> \(\frac{1}{DK^2}+\frac{1}{DI^2}\) ko đổi 

 

1 tháng 7 2018

  Xét tam giác ADI vuông tại A và tam giác CDL vuông tại C có :

       AD = DC ( ABCD la HV )

      ADI = CDL ( cung phụ KDC )

   \(\Rightarrow\) Tam giác ADI = CDL (  c . g . v - g . n . k )

    \(\Rightarrow\)DI = DL  \(\Rightarrow\) tam giác  DIL cân tại I

b,

Tam giác DCL vuông tại D , theo HTL

\(\frac{1}{DC^2}\) = \(\frac{1}{DK^2}\) +\(\frac{1}{DL^2}\)

DI = DL => \(\frac{1}{DC^2}\) = \(\frac{1}{DK^2}\) + \(\frac{1}{DI^2}\)

Vì DC không đổi => \(\frac{1}{DC^2}\) không đổi

=> \(\frac{1}{DK^2}\) +  \(\frac{1}{DI^2}\) không đổi