Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tam giác OAB là tam giác đều có cạnh R= 5,1 cm.
Công thức tính diện tích tam giác đều cạnh a là:
Do đó, diện tích tam giác đều OAB cạnh OA= R = 5,1 cm là:
Diện tích hình quạt tròn AOB là:
Từ (1) và (2) suy ra diện tích hình viên phân là:
Tam giác OAB là tam giác đều có cạnh R= 5,1 cm.
Công thức tính diện tích tam giác đều cạnh a là:
Do đó, diện tích tam giác đều OAB cạnh OA= R = 5,1 cm là:
Diện tích hình quạt tròn AOB là:
Từ (1) và (2) suy ra diện tích hình viên phân là:
Kiến thức áp dụng
+ Diện tích tam giác đều cạnh a là:
+ Diện tích hình quạt tròn bán kính R, cung nº được tính theo công thức:
góc AOB=180-60=120 độ
S OAB=1/2*OA*OB*sinAOB=\(R^2\cdot\dfrac{\sqrt{3}}{4}\)
S q OAB=\(pi\cdot R^2\cdot\dfrac{120}{360}=pi\cdot R^2\cdot\dfrac{1}{3}\)
=>\(Svp=R^2\left(pi\cdot\dfrac{1}{3}-\dfrac{\sqrt{3}}{4}\right)\)
OM^2+ON^2=MN^2
OM=ON
=>ΔOMN vuông cân tại O
\(S_{q\left(OMN\right)}=\dfrac{pi\cdot3^2\cdot90}{360}=2.25pi\)
b: \(S_{OMN}=\dfrac{1}{2}\cdot OM\cdot ON=4.5\left(cm^2\right)\)
\(S_{VP\left(MN\right)}=2.25pi-4.5\)(cm2)
\(\widehat{BAC}=60^o\Rightarrow\widehat{BOC}=120^o\). Diện tích cần tìm là \(\pi\).32-1/2.3.3.sin120o=9\(\pi\)-9\(\sqrt{3}\)/4 (cm2)\(\approx\)24,38 (cm2).
Hướng dẫn giải:
∆OAB là tam giác đều có cạnh bằng R = 5,1cm. Áp dụng công thức tính diện tích tam giác đều cạnh a là a2√44 ta có
S∆OBC = SΔOBC=R2√34 (1)
Diện tích hình quạt tròn AOB là:
π.R2.6003600=πR26 (2)
Từ (1) và (2) suy ra diện tích hình viên phân là:
πR26−R2√34=R2(π6−√34)
Thay R = 5,1 ta có Sviên phân ≈ 2,4 (cm2)