Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt AB = x
Gọi AC giao BD tại O
Tam ABD có AB = AD và A = 60 độ
=> tam giác ABD đều => AB = BD = x
BAC = 1/2 BAD = 1/2 . 60 = 30 độ ( AC là pg )
Tam giác ABO vuông tại O , theo HT giữa cạnh và góc
=> OA = AB . sin BAO = x.cos30 = \(\frac{\sqrt{3}}{2}x\)
=> AC = 2 OA = \(2\cdot\frac{\sqrt{3}}{2}x=\sqrt{3}x\)
\(S_{ABCD}=\frac{1}{2}AC\cdot BD=\frac{1}{2}\cdot x\cdot\sqrt{3}x=2\sqrt{3}\Leftrightarrow x^2=4\Leftrightarrow x=2\)
kẻhình thoi ABCD ta có
A=60o nên tam giác ABD đều nên AB=BD
kẻ AC cắt BD tại E
ta có SABCD=\(2\sqrt{3}\)=>\(\frac{1}{2}.BD.AC=2\sqrt{3}\Rightarrow\frac{1}{2}.AB.2AE=2\sqrt{3}\Rightarrow AB.AE=2\sqrt{3}\)
vì tam giác vuông ABE có B=60o
nên AE=\(\frac{\sqrt{3}}{2}.AB\) thế vào pt ta có
AB.AB.\(\frac{\sqrt{3}}{2}\)=\(2\sqrt{3}\)
\(AB^2=2\sqrt{3}:\frac{\sqrt{3}}{2}\Rightarrow AB^2=4\)
nên AB =2 vì AB dương