K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 7 2015

giúp tớ nhanh với ! Tớ sắp phải nộp rồi

 

12 tháng 6 2017

Ta có hình vẽ sau:

D C A B i

Diện tích tam giác DCB=1/3 diện tích tam giác ADB( cùng có đường cao là đường cao hình thang ABCD; DC=1/3AB)

Mà 2 tam giác này chung đáy DB nên đường cao hạ từ c xuống DB=1/3 đường cao hạ từ A xuống DB

Suy ra diện tích tam giác CIB=1/3 diện tích tam giác AIB (chung đáy IB)hay diện tích tam giác CIB=1/4 diện tích tam giác ACB hay diện tích tam giác ACB =3/4 diện tích tam giác ACB

Diện tích tam giác ADC =1/3 diện tích tam giác ACB(cùng có đường cao là đường cao hình thang ABCD; DC=1/3 AB) hay diện tích tam giác ADC=1/4 diện tích hình thang ABCD hay diện tích tam giác ACB=3/4 diện tích hình thang ABCD

Diện tích tam giác ACB là:

48*3/4=36(cm2)

Diện tích tam giác AIB là:

36*3/4=27(cm2)

            Đáp số:27cm2  

27 tháng 7 2020

A B C D I

a) ta có: BC = 1/2AD

SABC = SBCD 

+ hai tam giác có chung đáy

+ có chiều cao bằng chiều cao hình thang

- mà 2 tam giác có chung SICB 

=> cặp tam giác bằng nhau được tạo trong hình thang là SABI = SICD 

b) BI = 1/3ID => SICB = 1/3SICD do 2 tam giác có chung cao hạ từ C xuống AB và đáy BI = 1/3IB

chứng minh ngược: SBCD = 1/3SABD vì 2 tam giác có chung chiều cao là chiều cao của hình thang

đáy BC = 1/3AD

mặt khác: 2 tam giác có chung đáy BD nên IC = 1/3AI

=> SAIB = 3SBIC 

vì 2 tam giác có chung đường cao hạ từ B xuống AC

IC = 1/3AI

=> SAIB = 2/3SABC = 1/4.2/3(SABCD) = 2/12SABCD 

=> 2/12SABCD = 2/12.48 = 8 cm^2

nguồn: Dũng Lê Trí

24 tháng 3 2017

Ta có : \(S^{AID}=S^{BIC}\)

Mà theo đề ra : \(S^{CID}-S^{AIB}=193cm^2\)

\(\Rightarrow\left(S^{AID}+S^{CID}\right)-\left(S^{BIC}+S^{AIB}\right)=193cm^2\)

\(\Rightarrow S^{ADC}-S^{ABC}=193cm^2\)

Do \(\frac{AB}{CD}=\frac{2}{3}\Rightarrow\frac{S^{ABC}}{S^{ADC}}=\frac{2}{3}\)

\(\Rightarrow S^{ABCD}=S^{ADC}+S^{ABC}=193:\left(3-2\right)x\left(3+2\right)=965cm^2\)

Đ/S : ... ...

10 tháng 4 2022

chịu thui

 

 

15 tháng 5 2022

ko bt