Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1.
\(\left\{{}\begin{matrix}SA\perp\left(ABCD\right)\Rightarrow SA\perp AB\\AD\perp AB\end{matrix}\right.\) \(\Rightarrow AB\perp\left(SAD\right)\)
\(\Rightarrow\widehat{SBA}\) là góc giữa SB và (SAD)
\(tan\widehat{SBA}=\dfrac{SA}{AB}=\sqrt{3}\Rightarrow\widehat{SBA}=60^0\)
2.
\(SA\perp\left(ABC\right)\Rightarrow\left\{{}\begin{matrix}SA\perp AB\\SA\perp AC\end{matrix}\right.\) \(\Rightarrow\) các tam giác SAB và SAC vuông
\(\left\{{}\begin{matrix}SA\perp\left(ABC\right)\Rightarrow SA\perp BC\\BC\perp AB\end{matrix}\right.\) \(\Rightarrow BC\perp\left(SAB\right)\Rightarrow BC\perp SB\)
\(\Rightarrow\) Tam giác SBC vuông
Vậy tứ diện có 4 mặt đều là tam giác vuông (ABC hiển nhiên vuông theo giả thiết)
3.
a.
\(\left\{{}\begin{matrix}SA\perp\left(ABC\right)\Rightarrow SA\perp BC\\BC\perp AC\end{matrix}\right.\) \(\Rightarrow BC\perp\left(SAC\right)\)
b.
Gọi M là trung điểm BC \(\Rightarrow IM||AC\)
\(\Rightarrow AC||\left(SIM\right)\Rightarrow d\left(AC;SI\right)=d\left(AC;\left(SIM\right)\right)=d\left(A;\left(SIM\right)\right)\)
Qua A kẻ đường thẳng song song BC cắt IM kéo dài tại K
\(\Rightarrow IM\perp AK\Rightarrow IM\perp\left(SAK\right)\)
Trong mp (SAK), kẻ AH vuông góc SK
\(\Rightarrow AH\perp\left(SIM\right)\Rightarrow AH=d\left(A;\left(SIM\right)\right)\)
\(AK=CM=\dfrac{b}{2}\)
\(\dfrac{1}{AH^2}=\dfrac{1}{SA^2}+\dfrac{1}{AK^2}\Rightarrow AH=\dfrac{SA.AK}{\sqrt{SA^2+AK^2}}=\dfrac{\dfrac{h.b}{2}}{\sqrt{h^2+\dfrac{b^2}{4}}}=\dfrac{bh}{\sqrt{b^2+4h^2}}\)
1. Câu này đề bài là: \(\lim\limits_{x\rightarrow1}\dfrac{x-\sqrt[]{x+2}}{x-\sqrt[3]{3x+2}}\) đúng ko nhỉ?
Vậy thay số là được: \(=\dfrac{1-\sqrt[]{1+2}}{1-\sqrt[3]{3+2}}=\dfrac{1-\sqrt[]{3}}{1-\sqrt[3]{5}}\)
2.
a. \(\left\{{}\begin{matrix}SA\perp\left(ABCD\right)\Rightarrow SA\perp CD\\CD\perp AD\left(gt\right)\end{matrix}\right.\) \(\Rightarrow CD\perp\left(SAD\right)\)
b.
Trong mp (ABCD), từ D kẻ \(DE\perp AC\) (1)
\(SA\perp\left(ABCD\right)\Rightarrow SA\perp DE\) (2)
(1);(2) \(\Rightarrow DE\perp\left(SAC\right)\Rightarrow SE\) là hình chiếu vuông góc của SD lên (SAC)
\(\Rightarrow\widehat{DSE}\) là góc giữa SD và (SAC) hay \(\widehat{DSE}=\alpha\)
\(AC=\sqrt{AB^2+AD^2}=a\sqrt{5}\)
Áp dụng hệ thức lượng trong tam giác vuông ADC:
\(AE.AC=AD^2\Rightarrow AE=\dfrac{AD^2}{AC}=\dfrac{4a\sqrt{5}}{5}\)
\(SE=\sqrt{SA^2+AE^2}=\dfrac{a\sqrt{105}}{5}\) ; \(SD=\sqrt{SA^2+AD^2}=a\sqrt{5}\)
\(\Rightarrow cos\alpha=\dfrac{SE}{SD}=\dfrac{\sqrt{21}}{5}\)