Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng định lý Pitago vào tam giác HIK vuông tại H
Ta có \(HI^2+HK^2=IK^2=>3^2+4^2=IK^2\\ =>9+16=IK^2=>IK^2=25=>IK=\sqrt{25}=5\)
=> Chọn C
TK
IK2=HI2 +HK2=32+42 =25 (định lý pitago) ⇒IK=5cm
a: HK=12cm
b: Xét ΔIHM vuông tại H và ΔIEM vuông tại E có
IM chung
\(\widehat{HIM}=\widehat{EIM}\)
Do đó:ΔIHM=ΔIEM
c: Ta có: ΔIHM=ΔIEM
nên IH=IE; MH=ME
=>IM là đường trung trực của EH
a, Xét Δ IHK vuông tại H, có :
\(IK^2=IH^2+HK^2\) (định lí Py - ta - go)
=> \(13^2=5^2+HK^2\)
=> \(HK^2=144\)
=> HK = 12 (cm)
b, Xét Δ HIM và Δ EIM, có :
\(\widehat{HIM}=\widehat{EIM}\) (IM là tia phân giác \(\widehat{HIE}\))
IM là cạnh chung
\(\widehat{IHM}=\widehat{IEM}=90^o\)
=> Δ HIM = Δ EIM (g.c.g)
c, Ta có : Δ HIM = Δ EIM (cmt)
=> HI = EI
=> Δ HIE cân tại I
Ta có :
Δ HIE cân tại I
IM là tia phân giác \(\widehat{HIE}\)
=> IM ⊥ EH
a) Áp dụng định lí Pytago vào ΔQMP vuông tại M, ta được:
\(PQ^2=MP^2+MQ^2\)
\(\Leftrightarrow PQ^2=3^2+4^2=25\)
hay PQ=5(cm)
Vậy: PQ=5cm
Câu 2. Tam giác nào là tam giác vuông trong các tam giác có độ dài ba cạnh như sau :
A. 3cm; 5cm; 7cm
B. 4cm; 6cm; 8cm
C. 5cm; 7cm; 8cm
D. 3cm; 4cm; 5cm
\(3^2+4^2=5^2\)
Cái này còn được gọi là tam giác Ai Cập nữa nhé :))
`A. 3 cm, 3cm, 4cm`
Theo bất đẳng thức trong tam giác, ta có:
`3+3>4`
`->`\(\text{ Bộ ba độ dài này là độ dài 3 cạnh của 1 tam giác (k t/m)}\)
`B. 6cm, 10cm, 8 cm`
Theo bất đẳng thức trong tam giác, ta có:
`6+8>10`
`->`\(\text{ Bộ ba độ dài này là độ dài 3 cạnh của 1 tam giác (k t/m)}\)
`C.3cm, 4cm, 5cm`
Theo bất đẳng thức trong tam giác, ta có:
`3+4>5`
`->`\(\text{ Bộ ba độ dài này là độ dài 3 cạnh của 1 tam giác (k t/m)}\)
`D. 4cm, 8cm, 12cm`
Theo bất đẳng thức trong tam giác, ta có:
`4+8=12`
`->`\(\text{ Bộ ba độ dài này không phải là độ dài 3 cạnh của 1 tam giác (t/m)}\)
Xét các đáp án trên `-> D.`
Theo định lí Pytago tam giác HIK vuông tại H
\(HK=\sqrt{IK^2-HI^2}=4cm\)
chọn A
4cm