Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
PT $\frac{1}{x}+1=0\Leftrightarrow x=-1$
PT $x^2+1=0\Leftrightarrow x^2=-1< 0$ (vô lý) nên PT vô nghiệm.
Vậy PT(1) có tập nghiệm $\left\{-1\right\}$ còn PT(2) có tập nghiệm $\left\{\varnothing\right\}$ nên 2 PT này không tương đương.
Bài 3:
ĐKXĐ: $x\neq 0;\pm 1$
a)
\(Q=\left(\frac{x^2-1}{2x}\right)^2.\frac{(x-1)^2-(x+1)^2}{(x-1)(x+1)}=\frac{(x-1)^2(x+1)^2}{4x^2}.\frac{-4x}{(x+1)(x-1)}=\frac{-(x-1)(x+1)}{x}=\frac{1-x^2}{x}\)
b) Để $Q=-1,5\Leftrightarrow \frac{1-x^2}{x}=-1,5$
$\Rightarrow 1-x^2=-1,5x$
$\Leftrightarrow x^2-1,5x-1=0$
$\Leftrightarrow (x-2)(x+0,5)=0\Rightarrow x=2$ hoặc $x=-0,5$ (đều thỏa mãn)
c)
Để $Q$ không âm thì $\frac{1-x^2}{x}\geq 0$. Điều này xảy ra khi:
TH1 :\(\left\{\begin{matrix} 1-x^2\geq 0\\ x> 0\end{matrix}\right.\Leftrightarrow 0< x\leq 1\)
TH2: \(\left\{\begin{matrix} 1-x^2\leq 0\\ x<0\end{matrix}\right.\Leftrightarrow x\leq -1\)
Kết hợp với ĐKXĐ suy ra $0< x< 1$ hoặc $x< -1$
\(\left(\dfrac{1}{x-1}+\dfrac{1}{x+1}\right)\cdot\left(x-\dfrac{1}{x}\right)\) (1)
ĐK: \(\left\{{}\begin{matrix}x-1\ne0\\x+1\ne0\\x\ne0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x\ne1\\x\ne-1\\x\ne0\end{matrix}\right.\) \(\Leftrightarrow x\ne\pm1;x\ne0\)
\(\left(1\right)=\left(\dfrac{1}{x-1}+\dfrac{1}{x+1}\right)\cdot\left(\dfrac{x^2}{x}-\dfrac{1}{x}\right)\)
\(=\left(\dfrac{1}{x-1}+\dfrac{1}{x+1}\right)\cdot\dfrac{x^2-1}{x}\)
\(=\left(\dfrac{1}{x-1}+\dfrac{1}{x+1}\right)\cdot\dfrac{\left(x+1\right)\left(x-1\right)}{x}\)
\(=\dfrac{\left(x+1\right)\left(x-1\right)}{x}\cdot\dfrac{1}{x-1}+\dfrac{\left(x+1\right)\left(x-1\right)}{x}\cdot\dfrac{1}{x+1}\)
\(=\dfrac{x+1}{x}+\dfrac{x-1}{x}\)
\(=\dfrac{x+1+x-1}{x}\)
\(=\dfrac{2x}{x}\)
\(=2\)
\(1,4x\left(1-x\right)-8=1-\left(4x^2+3\right)\\ \Leftrightarrow4x-4x^2-8=1-4x^2-3\\ \Leftrightarrow4x-4x^2-8-1+4x^2+3=0\\ \Leftrightarrow4x-6=0\\ \Leftrightarrow x=\dfrac{3}{2}\)
\(2,\left(2-3x\right)\left(x+11\right)=\left(3x-2\right)\left(2-5x\right)\\ \Leftrightarrow\left(2-3x\right)\left(x+11\right)-\left(2-3x\right)\left(5x-2\right)=0\\ \Leftrightarrow\left(2-3x\right)\left(x+11-5x+2\right)=0\\ \Leftrightarrow\left(2-3x\right)\left(-4x+13\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=\dfrac{2}{3}\\x=\dfrac{13}{4}\end{matrix}\right.\)
\(\dfrac{x+1}{x}+1=\dfrac{3x-1}{x+1}+\dfrac{1}{x\left(x+1\right)}\)
\(\Leftrightarrow\left(x+1\right)\left(x+1\right)+1x\left(x+1\right)=\left(3x-1\right)\left(x+1\right)\)
\(\Leftrightarrow2x^2+3x+1=3x^2-x+1\)
\(\Leftrightarrow2x^2+3x+1=0\)
\(\Leftrightarrow-x^2+4x=0\)
\(\Leftrightarrow x\left(-x+4\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\-x+4=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=4\end{matrix}\right.\)
Vậy \(x=4\)
\(a=\dfrac{1}{9}.\left(999...9\right)=\dfrac{1}{9}.\left(100...0-1\right)=\dfrac{1}{9}\left(10^n-1\right)\)
\(b=100...0+5=10^n+5\)
\(\Rightarrow ab+1=\dfrac{1}{9}\left(10^n-1\right)\left(10^n+5\right)+1=\dfrac{1}{9}\left(10^{2n}+4.10^n+4\right)=\dfrac{1}{9}\left(10^n+2\right)^2\)
\(=\left(\dfrac{10^n+2}{3}\right)^2\)
Ta có: \(10\equiv1\left(mod3\right)\Rightarrow10^n\equiv1\left(mod3\right)\)
\(\Rightarrow10^n+2⋮3\)
\(\Rightarrow\dfrac{10^n+2}{3}\in Z\)
\(\Rightarrow\left(\dfrac{10^n+2}{3}\right)^2\) là SCP hay \(ab+1\) là SCP
Bài 1:
1) \(\left(3x^2y^3-2x^2y^2+6x^{^3}y^2\right):\left(-3x^2y^2\right)=-y+\frac{2}{3}-2x\)
2) a. \(3x\left(x-y\right)+2x-2y=3x\left(x-y\right)+2\left(x-y\right)=\left(3x+2\right)\left(x-y\right)\)
b.\(x^2-2xy-25+y^2=\left(x^2-2xy+y^2\right)-5^2=\left(x-y\right)^2-5^2=\left(x-y-5\right)\left(x-y+5\right)\)
Bài 2:
1) a. \(\frac{6x^2+6xy}{2x^2-2y^2}=\frac{6x\left(x+y\right)}{2\left(x^2-y^2\right)}=\frac{6x\left(x+y\right)}{2\left(x-y\right)\left(x+y\right)}=\frac{3x}{x-y}\)
b.\(\frac{x^2+7x+10}{x^2+4x+4}=\frac{x^2+2x+5x+10}{\left(x+2\right)^2}=\frac{x\left(x+2\right)+5\left(x+2\right)}{\left(x+2\right)^2}=\frac{\left(x+5\right)\left(x+2\right)}{\left(x+2\right)^2}\)
= x+5/x+2
2) CMR :
\(\frac{2x+2y}{x^2-y^2}=\frac{4x-4y}{2x^2-4xy+2y^2}\)
BĐ VT ta có: \(\frac{2x+2y}{x^2-y^2}=\frac{2\left(x+y\right)}{\left(x-y\right)\left(x+y\right)}=\frac{2}{x-y}\) (1)
BĐ VP ta có:\(\frac{4x-4y}{2x^2-4xy+2y^2}=\frac{4\left(x-y\right)}{2\left(x^2-2xy+y^2\right)}=\frac{4\left(x-y\right)}{2\left(x-y\right)^2}=\frac{2}{x-y}\) (2)
Từ (1) và (2) => VT=VP = 2/x-y (đpcm)
Bài 3:
1) 2x(x+1)-3x-3=0
=> 2x(x+1)-3(x+1)=0
=>(2x-3).(x+1)=0
=> 2 TH
*2x-3=0=>2x=3=>x=3/2
*x+1=0=>x=-1
Vậy x=3/2 hoặc x=-1
b) x^2+x-6=0
=>x^2-2x+3x-6=0
=>x(x-2)+3(x-2)=0
=>(x+3).(x-2)=0
=> 2 TH:
*x+3=0=>x=-3
*x-2=0=>x=2
Vậy x=-3 hoặc x=2
Câu 2 bài 3;bài 4 làm riêng nhé
Bài 5:
\(A=x^2+y^2+y-x+xy+1\)
\(\Rightarrow A=\left(x^2+y^2+xy\right)-x+y+1\)
\(\Rightarrow A=2.\left(x^2+y^2+xy\right)-2\left(x-y+1\right)\)
\(\Rightarrow A=2x^2+2y^2+2xy-2x+2y+2\)
\(\Rightarrow A=x^2+x^2+y^2+y^2+2xy-2x+2y+1+1\)
\(\Rightarrow A=\left(x^2+2xy+y^2\right)+\left(x^2-2x+1\right)+\left(y^2+2y+1\right)\)
\(\Rightarrow A=\left(x+y\right)^2+\left(x-1\right)^2+\left(y+1\right)^2\)
\(\Rightarrow A=\left(x+y\right)^2+\left(x-1\right)^2+\left(y+1\right)^2\) > 0 với \(\forall\)x;y
Vậy A luôn o âm với mọi x,y (đpcm)
2 nnaggvc