Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
(3x-5)^2 - (3x+1)^2 =8
(3x)^2 - 2*3x*5 + 5^2 -[(3x)^2 + 2*3x*5 + 1^2]= 8
9x^2 - 30x + 25 - (9x^2 + 30x + 1) = 8
9x^2 - 30x + 25 - 9x^2 - 30x - 1 = 8
- 30x + 25 - 30x - 1 = 8
2*(-30x) + (25 - 1) = 8
-60x + 24 = 8
-60x = 8 - 24
-60x = -16
x = -16 / -60
x = 16 / 60
x = 16 * 1/60
x = 16/60
x = 4/15
a) Cậu xem lại đề đi
b) \(3x.\left(x-2\right)-5x.\left(1-x\right)-8.\left(x^2-3\right)=4\)\(\Leftrightarrow3x^2-6x-5x+5x^2-8x^2+24-4=0\Leftrightarrow-11x+20=0\Leftrightarrow-11x=-20\Leftrightarrow x=\frac{20}{11}\)
c) \(2x^2+3.\left(x-1\right)\left(x+1\right)=5x\left(x+1\right)\Leftrightarrow2x^2+3\left(x^2-1\right)-5x\left(x+1\right)=0\)
\(\Leftrightarrow2x^2+3x^2-3-5x^2-5x=0\Leftrightarrow-5x=3\Leftrightarrow x=-\frac{3}{5}\)
Trần Anh: Cảm ơn bạn nhiều nhé :)) Phần a đúng là có sai đề pạn ạ mik làm hoài mà cux ko ra hì hì !!~~ Dù sao mik cux cảm ơn pạn nhiều nhiều nhé :3
`a,x^3-8 ne 0`
`=>x^3 ne 8`
`=>x ne 2`
`b,2x^2+5x+3 ne 0`
`=>2x^2+2x+3x+3 ne 0`
`=>2x(x+1)+3(x+1) ne 0`
`=>(x+1)(2x+3) ne 0`
`=>x ne -1,-3/2`
`c,x^2-4 ne 0`
`=>x^2 ne 4`
`=>x ne 2,-2`
a) ĐK:
\(x^3-8\ne0\\ \Leftrightarrow x\ne2\)
b) ĐK:
\(2x^2+5x+3\ne0\\ \Leftrightarrow\left[{}\begin{matrix}x\ne-1\\x\ne-\dfrac{3}{2}\end{matrix}\right.\)
c) ĐK:
\(x^2-4\ne0\\ \Leftrightarrow x\ne\pm2\)
a. \(3-4x\left(25-2x\right)-8x^2+x-300=0\)
\(\Leftrightarrow3-100x+8x^2-8x^2+x-300=0\)
\(\Leftrightarrow-297-99x=0\)
\(\Leftrightarrow x=3\)
Vậy \(n_0\) của PT là: x=3
b. \(\Leftrightarrow\frac{\left(2-6x\right)}{5}-2+\frac{3x}{10}=7-\frac{3x+3}{4}\)
\(\Leftrightarrow\frac{\left(4-12x\right)}{5}-\frac{20}{10}+\frac{3x}{10}=\frac{\left(28-3x-3\right)}{4}\)
\(\Leftrightarrow\frac{\left(-16-9x\right)}{10}=\frac{\left(25-3x\right)}{4}\)
\(\Leftrightarrow-64-36x=250-30x\)
\(\Leftrightarrow-6x=314\)
\(\Leftrightarrow x=-\frac{157}{3}\)
Vậy -\(n_0\) của PT là: \(x=\frac{-157}{3}\)
c. \(5x+\frac{2}{6}-8x-\frac{1}{3}=4x+\frac{2}{5}-5\)
\(\Leftrightarrow-3x=4x-\frac{23}{5}\)
\(\Leftrightarrow7x=\frac{23}{5}\)
\(\Leftrightarrow x=\frac{23}{35}\)
Vậy \(n_0\) của PT là: \(x=\frac{23}{35}\)
d. \(3x+\frac{2}{3}-3x+\frac{1}{6}=2x+\frac{5}{3}\)
\(\Leftrightarrow\frac{5}{6}=2x+\frac{5}{3}\)
\(\Leftrightarrow x=-\frac{5}{12}\)
Vậy \(n_0\) của Pt là: \(x=-\frac{5}{12}\)
Câu 1:
\(M=x^2-3x+5\)
\(M=x^2-2.\frac{3}{2}x+\frac{9}{4}+\frac{11}{4}\)
\(M=\left(x-\frac{3}{2}\right)^2+\frac{11}{4}\ge\frac{11}{4}\)
Dấu = xảy ra khi \(x-\frac{3}{2}=0\Rightarrow x=\frac{3}{2}\)
Vậy Min M = 11/4 khi x=3/2
b)\(N=2x^2+3x\)
\(N=2\left(x^2+\frac{3}{2}x\right)\)
\(N=2\left(x^2+2.\frac{3}{4}x+\frac{9}{16}\right)-\frac{9}{8}\)
\(N=2\left(x+\frac{3}{4}\right)^2-\frac{9}{8}\ge-\frac{9}{8}\)
Dấu = xảy ra khi \(x+\frac{3}{4}=0\Rightarrow x=-\frac{3}{4}\)
Vậy MIn N = -9/8 khi x=-3/4
c)Tự làm nha
Ta có : x2 - 3x + 5
= x2 - 2.x.\(\frac{3}{2}\) + \(\frac{3}{2}^2\) + \(\frac{11}{4}\)
= \(\left(x-\frac{3}{2}\right)^2+\frac{11}{4}\)
Vì \(\left(x-\frac{3}{2}\right)^2\ge0\forall x\in R\)
Nên : \(\left(x-\frac{3}{2}\right)^2+\frac{11}{4}\) \(\ge\frac{11}{4}\forall x\in R\)
Vậy GTNN của biểu thức là : \(\frac{11}{4}\) khi \(x=\frac{3}{2}\)
1) x3 + 5x2 + 3x - 9
= x3 + 2x2 + 3x2 + 6x - 3x - 9
= ( x3 + 2x2 ) + (3x2 + 6x ) - ( 3x + 9 )
= x2 ( x+ 2 ) + 3x ( x + 2) - 3( x +2 )
= ( x + 2 ) ( x2 + 3x -3 )
2) x3 + 5x2 + 8x + 4
= ( x3 + x2 ) + ( 4x2 + 4x ) + ( 4x + 4 )
= x2 ( x + 1 ) + 4x ( x + 1 ) + 4 ( x + 1 )
= ( x + 1) ( x2 + 4x + 4 )
= (x + 1 ) ( x + 2 )2
3) x3 - 9x2 + 6x + 16
= x3 - 8x2 - x2 + 8x - 2x + 16
= ( x3 - 8x2 ) - ( x2 - 8x ) - ( 2x - 16 )
= x2 ( x - 8 ) - x ( x - 8 ) - 2 ( x - 8 )
= ( x - 8 ) ( x2 - x - 2 )
4) x3 - 4x2 + x + 6
= x3 - 3x2 - x2 + 3x - 2x + 6
= ( x3 - 3x2 ) - ( x2 - 3x ) - ( 2x - 6)
= x2 ( x - 3 ) - x ( x- 3 ) - 2 ( x - 3)
= ( x - 3 ) ( x2 - x - 2 )
Tìm min:
$F=3x^2+x-2=3(x^2+\frac{x}{3})-2$
$=3[x^2+\frac{x}{3}+(\frac{1}{6})^2]-\frac{25}{12}$
$=3(x+\frac{1}{6})^2-\frac{25}{12}\geq \frac{-25}{12}$
Vậy $F_{\min}=\frac{-25}{12}$. Giá trị này đạt tại $x+\frac{1}{6}=0$
$\Leftrightarrow x=\frac{-1}{6}$
Tìm min
$G=4x^2+2x-1=(2x)^2+2.2x.\frac{1}{2}+(\frac{1}{2})^2-\frac{5}{4}$
$=(2x+\frac{1}{2})^2-\frac{5}{4}\geq 0-\frac{5}{4}=\frac{-5}{4}$ (do $(2x+\frac{1}{2})^2\geq 0$ với mọi $x$)
Vậy $G_{\min}=\frac{-5}{4}$. Giá trị này đạt tại $2x+\frac{1}{2}=0$
$\Leftrightarrow x=\frac{-1}{4}$
\(5x^2\left(3x-2\right)-3x^2\left(5x+2\right)+2x\left(3+8x\right)=21\)
\(\Leftrightarrow15x^3-10x^2-15x^3-6x^2+6x+16x^2-21=0\)
\(\Leftrightarrow6x-21=0\)
\(\Leftrightarrow6x=21\)
\(\Leftrightarrow x=3,5\)