\(\left(\log_{^b_a}+log^a_b+2\right)\left(log^b_a-log^b_{b....">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
8 tháng 11 2017

Lời giải:

Đặt \(\log_ab=x\Rightarrow \log_ba=\frac{1}{x}\)

a)

\(A=(x+\frac{1}{x}+2)(x-\frac{1}{x}).\frac{1}{x}\)

\(\Leftrightarrow A=(1+\frac{1}{x^2}+2x)(x-\frac{1}{x})=\left(1+\frac{1}{x}\right)^2(x-\frac{1}{x})\)

\(\Leftrightarrow A=(1+\log_ba)^2(\log_ab-\log_ba)\)

-------------------------------------------------------

b) Điều kiện: \(x>0\)

Có \(1=\log_{ab}b.\log_b(ab)=\log_{ab}b(\log_ba+\log_bb)=\log_{ab}b(\frac{1}{x}+1)\)

\(\Rightarrow \log_{ab}b=\frac{x}{x+1}\)

Như vậy:

\(B=\sqrt{x+\frac{1}{x}+2}(x-\frac{x}{x+1})\sqrt{x}\)

\(\Leftrightarrow B=\sqrt{x^2+1+2x}(x-\frac{x}{x+1})=|x+1|.\frac{x^2}{x+1}\)

\(=(x+1)\frac{x^2}{x+1}=x^2=\log_a^2b\) (do \(x>0)\)

9 tháng 11 2017

thanks

4 tháng 5 2016

Ta có \(A=\left(\log^3_ba+2\log^2_ba+\log_ba\right)\left(\log_ab-\log_{ab}b\right)-\log_ba\)

             \(=\left(\log_ba+1\right)^2\left(1-\frac{1}{\log_aab}\right)-\log_ba\)

             \(=\left(\log_ba+1\right)^2\left(1-\frac{1}{1+\log_ab}\right)-\log_ba\)

             \(=\left(\log_ba+1\right)^2\left(1-\frac{\log_ba}{\log_ba+1}\right)-\log_ba\)

             \(=\log_ba+1-\log_ba=1\)

24 tháng 5 2017

Hàm lũy thừa, mũ và loagrit

28 tháng 8 2021

hacker

AH
Akai Haruma
Giáo viên
26 tháng 2 2019

Bạn xem lại xem có type thiếu đề không? \((x+\frac{\pi}{6})\) có sin hay cos, tan ở phía trước không?

26 tháng 2 2019

Sin nha

23 tháng 5 2017

Hàm lũy thừa, mũ và loagrit

Hàm lũy thừa, mũ và loagrit

23 tháng 5 2017

Hàm lũy thừa, mũ và loagrit

Hàm lũy thừa, mũ và loagrit

Chọn B

AH
Akai Haruma
Giáo viên
26 tháng 11 2017

Lời giải:

Đặt \(\log_9a=\log_{12}b=\log_{16}(a+b)=t\)

\(\left\{\begin{matrix} a=9^t\\ b=12^t\\ a+b=16^t\end{matrix}\right.\Rightarrow 9^t+12^t=16^t\)

Chia 2 vế cho \(12^t\) ta có:

\(\left(\frac{9}{12}\right)^t+1=\left(\frac{16}{12}\right)^t\)

\(\Leftrightarrow \left(\frac{3}{4}\right)^t+1=\left(\frac{4}{3}\right)^t\) (1)

Đặt \(\frac{a}{b}=\left(\frac{9}{12}\right)^t=\left(\frac{3}{4}\right)^t=k\). Thay vào (1):

\(k+1=\frac{1}{k}\Leftrightarrow k^2+k-1=0\)

\(\Leftrightarrow \frac{a}{b}=k=\frac{-1+ \sqrt{5}}{2}\) (do \(k>0\) nên loại TH \(k=\frac{-1-\sqrt{5}}{2}\) )

Thấy \(\frac{-1+\sqrt{5}}{2}\in (0;\frac{2}{3})\) nên chọn đáp án b

14 tháng 12 2017

tks u verry much