K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) Vì tam giác ABc cân nên :
góc B = góc C
Lại vì AE=Ad => tam giác AED cần
=> Góc E = góc D
Ta có:
góc E + góc D+ góc EAD = Góc B + góc C+ góc BAC(=180 độ)
mà góc EAD = góc BAC ( đói đỉnh)
=> góc E + góc D = góc B+ góc C
mặt khác :góc B = góc C , Góc E = góc D
=> Góc E= góc C mà 2 góc này ơ vị trí so le trong nên :ED// BC ( đpcm)

b )Xét tam giác EAB và tam giác DAC có :
AE= AD ( gt )
AB=AC ( cmt)
Góc EAB= góc CAD ( đói đỉnh)
=> tam giacs EAB = tam giác DAC(c.g.c)
=> EB=CD( 2 cạnh tương ứng ( đpcm)

10 tháng 7 2019

Tham khảo :

Câu hỏi của nguyen thi thom - Toán lớp 7 - Học toán với OnlineMath

Học tốt!!!

10 tháng 7 2019

Câu hỏi của Chi Chi - Toán lớp 7 - Học toán với OnlineMath

Tham khảo tại link trên.

10 tháng 7 2019

A B C D E M

10 tháng 7 2019

a) Xét \(\Delta EAB\)và \(\Delta DAC\)có:

      \(AE=AD\)(gt)

     \(\widehat{EAB}=\widehat{DAC}\)(đối đỉnh)

     \(AB=AC\)(Do tam giác ABC cân tại A)

Suy ra \(\Delta EAB=\Delta DAC\left(c.g.c\right)\)

\(\Rightarrow BE=CD\)(hai cạnh tương ứng)

16 tháng 1 2022

tham khảo

a) Vì tam giác ABc cân nên :
góc B = góc C
Lại vì AE=Ad => tam giác AED cần
=> Góc E = góc D
Ta có:
góc E + góc D+ góc EAD = Góc B + góc C+ góc BAC(=180 độ)
mà góc EAD = góc BAC ( đói đỉnh)
=> góc E + góc D = góc B+ góc C
mặt khác :góc B = góc C , Góc E = góc D
=> Góc E= góc C mà 2 góc này ơ vị trí so le trong nên :ED// BC ( đpcm)

16 tháng 1 2022

\(\text{Hình bạn tự vẽ nhoa!}\)

\(\text{a)}\Delta ABC\text{ cân tại }A:\)

\(\Rightarrow\widehat{B}=\widehat{C}\)

\(\text{Vì }AD=AE\)

\(\Rightarrow\Delta AED\text{ cân tại A}:\)

\(\Rightarrow\widehat{E}=\widehat{D}\)

\(\text{Ta có:}\widehat{B}+\widehat{C}+\widehat{BAC}=\widehat{E}+\widehat{D}+\widehat{EAD}=180^0\)

\(\text{mà }\widehat{EAD}\text{ và }\widehat{BAC}\text{(đối đỉnh)}\)

\(\Rightarrow\widehat{E}+\widehat{D}=\widehat{B}+\widehat{C}\)

\(\Rightarrow\widehat{E}=\widehat{C}\)

\(\text{mà chúng so le trong}\)

\(\Rightarrow ED=BC\)

\(\text{b)Xét }\Delta EAB\text{ và }\Delta DAC\text{ có:}\)

\(AE=AD\left(gt\right)\)

\(AB=AC\left(cmt\right)\)

\(\widehat{EAB}=\widehat{CAD}\text{(đối đỉnh)}\)

\(\Rightarrow\Delta EAB=\Delta DAC\left(c.g.c\right)\)

\(BE=CD\text{(2 cạnh tương ứng)}\)

\(\text{c)Ta có:}\Delta EAB=\Delta DAC\left(cmt\right)\)

\(\Rightarrow\widehat{AEB}=\widehat{ADC}\)

\(\text{mà }\widehat{AED}=\widehat{ADE}\)

\(\Rightarrow\widehat{AEB}+\widehat{AED}=\widehat{ADC}+\widehat{ADE}\)

\(\text{Xét }\Delta BED\text{ và }\Delta CDE\text{ có:}\)

\(BE=CD\left(cmt\right)\)

\(\widehat{BED}=\widehat{CDE}\left(cmt\right)\)

\(ED\text{ chung}\)

\(\Rightarrow\Delta BED=\Delta CDE\left(c.g.c\right)\)

a: Xét ΔABC vuông tại A và ΔADE vuông tại A có

AB=AD

AC=AE

Do đó: ΔABC=ΔADE
=>BC=DE
b: Xét ΔABD vuông tại A có AB=AD

nên ΔABD vuông cân tại A

=>\(\widehat{ABD}=\widehat{ADB}=45^0\)

Xét ΔAEC vuông tại A có AE=AC

nên ΔAEC vuông cân tại A

=>\(\widehat{AEC}=\widehat{ACE}=45^0\)

Ta có: \(\widehat{ABD}=\widehat{AEC}\left(=45^0\right)\)

mà hai góc này là hai góc ở vị trí so le trong

nên BD//CE
 

22 tháng 12 2021

\(a,\)(Sửa đề: \(\Delta ABD=\Delta EBD\))

Vì \(\begin{cases} AB=BE\\ \widehat{ABD}=\widehat{EBD}\\ BD\text{ chung} \end{cases}\) nên \(\Delta ABD=\Delta EBD(c.g.c)\)

\(\Rightarrow \widehat{BAD}=\widehat{BED}=90^0\\ \Rightarrow DE\bot BC\)

\(b,\Delta ABD=\Delta EBD(cmt)\\ \Rightarrow AD=DE\Rightarrow D\in\text{trung trực }AE\\ AB=BE\Rightarrow B\in \text{trung trực }AE\\ \Rightarrow BD\text{ là trung trực }AE\)

\(c,\begin{cases} \widehat{MAD}=\widehat{CED}=90^0\\ AD=DE\\ AM=EC \end{cases}\\\Rightarrow \Delta ADM=\Delta EDC(c.g.c)\\ \Rightarrow MC=MD\)

\(d,\Delta ADM=\Delta EDC(cmt)\\ \Rightarrow \widehat{ADM}=\widehat{EDC}\)

Mà 2 góc này ở vị trí đối đỉnh và \(A,D,C\) thẳng hàng nên \(M,D,E\) thẳng hàng

a: Xét ΔABC vuông tại A và ΔADE vuông tại A có

AB=AD

BC=DE

=>ΔABC=ΔADE

b: AE=AC

góc EAC=90 độ

=>góc ACE=góc AEC=45 độ

1) Xét ΔCAB vuông tại A và ΔEAD vuông tại A có 

AB=AD(gt)

AC=AE(gt)

Do đó: ΔCAB=ΔEAD(hai cạnh góc vuông)

Suy ra: BC=DE(hai cạnh tương ứng)

2) Xét ΔABD có AB=AD(gt)

nên ΔABD cân tại A(Định nghĩa tam giác cân)

Xét ΔABD cân tại A có \(\widehat{BAD}=90^0\)(gt)

nên ΔABD vuông cân tại A(Định nghĩa tam giác vuông cân)