K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 11 2017

- Tập xác định: D = R\{-1}.

- Đạo hàm: Đề kiểm tra 45 phút Đại số 11 Chương 5 có đáp án (Đề 1)

- Đồ thị hàm số cắt trục tung tại điểm A(0; -1).

- Hệ số góc của tiếp tuyến tại điểm A là: k = y’(0) = 2.

Chọn B.

24 tháng 3 2017

 Tập xác định: D = R \{1}.

- Đạo hàm: Đề kiểm tra 45 phút Đại số 11 Chương 5 có đáp án (Đề 4)

- Đồ thị hàm số cắt trục tung tại điểm A(0; -1)

   ⇒ y'(0) = 2.

Chọn B.

AH
Akai Haruma
Giáo viên
5 tháng 4 2021

Lời giải:

$y'=\frac{-1}{(x+1)^2}$

Giao điểm của đồ thị $y=\frac{x+2}{x+1}$ vớ trục hoành là $(-2,0)$

PTTT của $y=\frac{x+2}{x+1}$ tại điểm tiếp điểm $(-2,0)$ là:

$y=f'(-2)(x+2)+f(-2)=\frac{-1}{(-2+1)^2}(x+2)+0$

$y=-x-2$

Đường tiếp tuyến $y=-x-2$ cắt trục tung tại điểm có tung độ:

$y=-0-2=-2$

 

14 tháng 9 2019

- Tập xác định: D = R\ {1}

- Đạo hàm: Đề kiểm tra 45 phút Đại số 11 Chương 5 có đáp án (Đề 3)

- Đồ thị hàm số cắt trục hoành tại Đề kiểm tra 45 phút Đại số 11 Chương 5 có đáp án (Đề 3)

- Hệ số góc của tiếp tuyến tại A là Đề kiểm tra 45 phút Đại số 11 Chương 5 có đáp án (Đề 3)

Chọn A.

4 tháng 4 2021

\(y'=\dfrac{-4}{\left(x-1\right)^2}\)

a) \(y'=-1\Rightarrow\left[{}\begin{matrix}x=3\\x=-1\end{matrix}\right.\)

pt tiếp tuyến : \(\left[{}\begin{matrix}y=-\left(x-3\right)+4=-x+7\\y=-\left(x+1\right)=-x-1\end{matrix}\right.\)

b) \(k=\pm1\)

\(y'< 0\forall x\Rightarrow y'=-1\)

làm như trên

c) hoành độ tiếp điểm \(x=\pm2\)

TH x = 2 

\(k=-4\)

pt tiếp tuyến : \(y=-4\left(x-2\right)+6=-4x+14\)

TH x = -2

\(k=-\dfrac{4}{9}\)

pt tiếp tuyến : \(y=-\dfrac{4}{9}\left(x+2\right)+\dfrac{2}{3}=-\dfrac{4}{9}x-\dfrac{2}{9}\)

NV
28 tháng 4 2021

Thay tọa độ A vào ta được: \(\dfrac{b}{-1}=-1\Rightarrow b=1\)

\(\Rightarrow y=\dfrac{ax+1}{x-1}\Rightarrow y'=\dfrac{-a-1}{\left(x-1\right)^2}\)

\(y'\left(0\right)=-3\Leftrightarrow\dfrac{-a-1}{\left(0-1\right)^2}=-3\Leftrightarrow-a-1=-3\)

\(\Rightarrow a=2\)

NV
2 tháng 4 2021

\(y'=\dfrac{-4}{\left(x-1\right)^2}\)

a. \(\dfrac{2x+2}{x-1}=-2\Rightarrow2x+2=-2x+2\Rightarrow x=0\Rightarrow y'\left(0\right)=-4\)

Phương trình tiếp tuyến: \(y=-4\left(x-0\right)-2\)

b. Tiếp tuyến song song đường thẳng đã cho nên có hệ số góc k=-4

\(\Rightarrow\dfrac{-4}{\left(x-1\right)^2}=-4\Rightarrow\left[{}\begin{matrix}x=0\Rightarrow y=-2\\x=2\Rightarrow y=6\end{matrix}\right.\)

Có 2 tiếp tuyến thỏa mãn: \(\left[{}\begin{matrix}y=-4\left(x-0\right)-2\\y=-4\left(x-2\right)+6\end{matrix}\right.\)

c. Gọi \(M\left(x_0;y_0\right)\) là tọa độ tiếp điểm

Pt tiếp tuyến qua M có dạng: \(y=\dfrac{-4}{\left(x_0-1\right)^2}\left(x-x_0\right)+\dfrac{2x_0+2}{x_0-1}\)

Do tiếp tuyến qua A nên:

\(3=\dfrac{-4}{\left(x_0-1\right)^2}\left(4-x_0\right)+\dfrac{2x_0+2}{x_0-1}\)

\(\Leftrightarrow x_0^2-10x_0+21=0\Rightarrow\left[{}\begin{matrix}x_0=3\Rightarrow y'\left(3\right)=-1;y\left(3\right)=4\\x_0=7;y'\left(7\right)=-\dfrac{1}{9};y\left(7\right)=\dfrac{8}{3}\end{matrix}\right.\)

Có 2 tiếp tuyến thỏa mãn: \(\left[{}\begin{matrix}y=-1\left(x-3\right)+4\\y=-\dfrac{1}{9}\left(x-7\right)+\dfrac{8}{3}\end{matrix}\right.\)

NV
2 tháng 4 2021

d.

Do tiếp tuyến tạo với 2 trục tọa độ 1 tam giác vuông cân nên có hệ số góc bằng 1 hoặc -1

\(\Rightarrow\left[{}\begin{matrix}\dfrac{-4}{\left(x-1\right)^2}=1\left(vô-nghiệm\right)\\\dfrac{-4}{\left(x-1\right)^2}=-1\end{matrix}\right.\)

\(\Rightarrow\left(x-1\right)^2=4\Rightarrow\left[{}\begin{matrix}x=3\Rightarrow y=4\\x=-1\Rightarrow y=0\end{matrix}\right.\)

Có 2 tiếp tuyến thỏa mãn:

\(\left[{}\begin{matrix}y=-1\left(x-3\right)+4\\y=-1\left(x+1\right)+0\end{matrix}\right.\)

\(y'=\left(x^3-3x^2+4x-1\right)'=3x^2-3\cdot2x+4\)

\(=3x^2-6x+3+1=3\left(x-1\right)^2+1>=1\)

Dấu = xảy ra khi x=1

=>Chọn A

NV
2 tháng 4 2021

\(y'=3x^2-3\)

a. \(y'=9\Rightarrow3x^2-3=9\Rightarrow\left[{}\begin{matrix}x=2\Rightarrow y=5\\x=-2\Rightarrow y=-1\end{matrix}\right.\)

Có 2 tiếp tuyến thỏa mãn: \(\left[{}\begin{matrix}y=9\left(x-2\right)+5\\y=9\left(x+2\right)-1\end{matrix}\right.\)

b. Tiếp tuyến vuông góc Oy nên nhận \(\left(0;1\right)\) là 1 vtpt \(\Rightarrow\) có hệ số góc \(k=0\)

\(\Rightarrow3x^2-3=0\Rightarrow\left[{}\begin{matrix}x=1\Rightarrow y=-1\\x=-1\Rightarrow y=3\end{matrix}\right.\)

Có 2 tiếp tuyến thỏa mãn: \(\left[{}\begin{matrix}y=-1\\y=3\end{matrix}\right.\)