Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1.
a.\(\Delta=\left(4m+1\right)^2-8\left(m-4\right)=16m^2+33>0\left(\forall m\in R\right)\)
b.Gia su 2 nghiem cua PT la \(x_1,x_2\left(x_1>x_2\right)\)
Theo de bai ta co;\(x_1-x_2=17\)
Tu cau a ta co:\(x_1=\frac{-4m-1+\sqrt{16m^2+33}}{2}\) \(x_2=\frac{-4m-1-\sqrt{16m^2+33}}{2}\)
\(\Rightarrow\frac{-4m-1+\sqrt{16m^2+33}}{2}-\frac{-4m-1-\sqrt{16m^2+33}}{2}=17\)
\(\Leftrightarrow\frac{2\sqrt{16m^2+33}}{2}=17\)
\(\Leftrightarrow16m^2+33=289\)
\(\Leftrightarrow m=4\)
2.
a.\(\Delta'=\left(m-1\right)^2-\left(m+2\right)\left(3-m\right)=2m^2-3m-5=\left(m+1\right)\left(2m-5\right)>0\)
TH1:\(\hept{\begin{cases}m+1>0\\2m-5>0\end{cases}\Leftrightarrow m>\frac{5}{2}}\)
TH2:\(\hept{\begin{cases}m+1< 0\\2m-5< 0\end{cases}\Leftrightarrow m< -1}\)
Xet TH1:\(x_1=\frac{-m+1+\sqrt{2m^2-3m-5}}{m+2}\) \(x_2=\frac{-m+1-\sqrt{2m^2-3m-5}}{m+2}\)
Ta co:\(x^2_1+x^2_2=x_1+x_2\)
\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1.x_2=x_1+x_2\)
\(\Leftrightarrow\left(\frac{-2m+2}{m+2}\right)^2-\frac{-m^2+5m+6}{\left(m+2\right)^2}=\frac{-2m+2}{m+2}\)
\(\Leftrightarrow\frac{5m^2-13m-2}{\left(m+2\right)^2}=\frac{-2m^2-2m+4}{\left(m+2\right)^2}\)
\(\Rightarrow7m^2-11m-6=0\)
\(\Delta_m=121+168=289>0\)
\(\Rightarrow\hept{\begin{cases}m_1=2\left(l\right)\\m_2=-\frac{3}{7}\left(l\right)\end{cases}}\)
TH2;Tuong tu
Vay khong co gia tri nao cua m de PT co 2 nghiem thoa man \(x^2_1+x^2_2=x_1+x_2\)
a)Với y=1 ta có hpt:
\(\int^{2x+3=3+m}_{x+2=m}\Leftrightarrow\int^{2x=m}_{x+2=2x}\Leftrightarrow\int^{2.2=m}_{x=2}\Leftrightarrow\int^{m=4}_{x=2}\)
Vậy nghiệm của hpt là (2;1) khi m=4
b)đợi suy nghĩ
Phương trình được viết lại:
\(4x^2+4x+1=4y^4+4y^3+y^2+3y^2+4y+1\)
\(\Leftrightarrow4x^2+4x+1=\left(2y^2+y\right)^2+3y^2+4y+1\)
\(\Leftrightarrow\left(2x+1\right)^2=\left(2y^2+y+1\right)^2+2y-y^2\)
Nếu: \(y=-1\)và \(2y-y^2< 0\Rightarrow3y^2+4y+1>0\)
\(\Rightarrow\left(2y^2+y\right)^2< \left(2x+1\right)^2< \left(2y^2+y+1\right)^2\)
Ta thấy vô lí vì \(\left(2y^2+y\right)^2;\left(2y^2+y+1\right)\)là 2 số chính phương liên tiếp.
Vì thế nên \(y\)nhận 1 trong những giá trị: \(-1;0;1;2\)
- \(y=-1\Rightarrow\orbr{\begin{cases}x=0\\x=-1\end{cases}}\)
- \(y=0\Rightarrow\orbr{\begin{cases}x=0\\x=-1\end{cases}}\)
- \(y=1\Rightarrow\)Không tồn tại \(x\)
- \(y=2\Rightarrow\orbr{\begin{cases}x=5\\x=-6\end{cases}}\)
Vậy các nghiệm nguyên của phương trình là: \(\left(x,y\right)\in\left\{\left(0;-1\right),\left(-1;-1\right);\left(0;0\right);\left(-1;0\right);\left(5;2\right);\left(-6;2\right)\right\}\)
Ta đưa về dạng: \(\left(2y+1\right)^2=\left(2x^2+x\right)^2+\left(3x+1\right)\left(x+1\right)\)
\(=\left(2x^2+x+1\right)^2-x\left(x-2\right)\)
Khi:\(\left(3x+1\right)\left(x+1\right)\)dương thì: \(\left(2y+1\right)^2>\left(2x^2+x\right)^2\)
Khi: \(x\left(x-2\right)\) dương thì: \(\left(2y+1\right)^2< \left(2x^2+x+1\right)^2\)
\(\Rightarrow\hept{\begin{cases}x< -1\\x>2\end{cases}}\)\(\left(2x^2+x\right)^2< 4x^4+4x^3+4x^2+4x+1< \left(2x^2+x+1\right)^2\)
Mà: \(2x^2+x\) và \(2x^2+x+1\)là hai số liên tiếp nên trường hợp này không có nghiệm nguyên.
Vậy muốn có nghiệm nguyên thì: \(-1\le x\le2\Rightarrow x=0;1;1;2\)
Vậy pt có nghiệm nguyên \(\left(x,y\right)=\left\{\left(-1;0\right);\left(-1;-1\right);\left(0;0\right);\left(0;-1\right);\left(2;5\right);\left(2;-6\right)\right\}\)
\(\Leftrightarrow y^2+y=\left(x^4+x^3\right)+\left(x^2+x\right)\)
\(\Leftrightarrow y\left(y+1\right)=x^3\left(x+1\right)+x\left(x+1\right)\)
\(\Leftrightarrow y\left(y+1\right)=\left(x^3+x\right)\left(x+1\right)\)
\(\Leftrightarrow y\left(y+1\right)=\left[x\left(x+1\right)\right]^2\)
Mà (y,y+1)=1
\(\Rightarrow y\in\left\{0;-1\right\}\)
\(\Rightarrow\left[x\left(x+1\right)\right]^2=0\Rightarrow x\in\left\{-1;0\right\}\)
Vậy\(\left(x,y\right)\in\left\{\left(0;0\right),\left(-1;0\right),\left(-1;-1\right),\left(0;-1\right)\right\}\)
mk làm hơi tắt sorry
Ta có: \(x^4+16x^2+32=0\Leftrightarrow\left(x^2-8\right)^2-32=0\left(1\right)\)
Với \(x=\sqrt{6-3\sqrt{2+\sqrt{3}}}-\sqrt{2+\sqrt{2+\sqrt{3}}}\)\(\Leftrightarrow x=\sqrt{3}\sqrt{2-\sqrt{2+\sqrt{3}}}-\sqrt{2+\sqrt{2+\sqrt{3}}}\)
\(\Rightarrow x^2=8-2\sqrt{2+\sqrt{3}}-2\sqrt{3}\sqrt{2-\sqrt{3}}\)
Thay x vào vế phải của (1) ta được:
\(\left(x^2-8\right)^2-32=\left(8-2\sqrt{2+\sqrt{3}}-2\sqrt{3}\sqrt{2-\sqrt{3}}-8\right)^2-32\)
\(=4\left(2+\sqrt{3}\right)+4\sqrt{3}+12\left(2-\sqrt{3}\right)-32\)
\(=8+4\sqrt{3}+8\sqrt{3}+24-12\sqrt{3}-32=0\)= vế phải
Vậy \(x-\sqrt{6-3\sqrt{2+\sqrt{3}}}-\sqrt{2+\sqrt{2+\sqrt{3}}}\)là 1 nghiệm của phương trình đã cho(đpcm)
Đáp án là B
Vậy hệ phương trình có nghiệm (x; y)= (2; 2)