Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chú ý. Đối với những hệ phương trình có hệ số thập phân như thế này ta nên nhân với 10 để có hệ phương trình hệ số nguyên:
Thay vào ta thấy phương án A sai, còn phương án B đúng. Vậy đáp án là B.
Đáp án: B
a: Thay x=-1 và y=2 vào 2x-y+3, ta được:
\(2x-y+3=-2-2+3=-1< 0\)
=>(-1;2) không là nghiệm của bất phương trình 2x-y+3>0
b:
-x+2+2(y-2)<2(2-x)(1)
=>-x+2+2y-4<4-2x
=>-x+2y-2-4+2x<0
=>x+2y-6<0
Thay x=-1 và y=2 vào x+2y-6, ta được:
\(x+2y-6=-1+4-6=-3< 0\)
=>(-1;2) là nghiệm của bất phương trình (1)
c: Thay x=-1 và y=2 vào x-y-15, ta được:
\(x-y-15=-1-2-15=-18< 0\)
=>(-1;2) là nghiệm của bất phương trình x-y-15<0
d: 3(x-1)+4(y-2)<5x-3(2)
=>3x-3+4y-8<5x-3
=>3x+4y-11-5x+3<0
=>-2x+4y-8<0
=>x-2y+4>0
Khi x=-1 và y=2 thì \(x-2y+4=-1-4+4=-1< 0\)
=>(-1;2) không là nghiệm của bất phương trình (2)
a)
\(A=3\left(x-y\right)^2-2\left(x+y\right)^2-\left(x-y\right)\left(x+y\right)\)\(2A=\left[\left(x-y\right)-\left(x+y\right)\right]^2+5\left(x-y\right)^2-5\left(x+y\right)^2\)
\(2A=4y^2+5\left[\left(x-y\right)-\left(x+y\right)\right]\left[\left(x-y\right)+\left(x+y\right)\right]\)\(2A=4y^2+5\left[-2y\right]\left[2x\right]=4y^2-20xy=4y\left(y-5x\right)\\ \)\(A=2y\left(y-5x\right)\)
a, Trừ vế theo vế hai phương trình ta được
\(x^2+6y-y^2-6x=0\)
\(\Leftrightarrow\left(x-y\right)\left(x+y-6\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=y\\x=6-y\end{matrix}\right.\)
Nếu \(x=y,pt\left(1\right)\Leftrightarrow x^2+x=5x+3\)
\(\Leftrightarrow x^2-4x-3=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=y=2+\sqrt{7}\\x=y=2-\sqrt{7}\end{matrix}\right.\)
Nếu \(x=6-y,pt\left(2\right)\Leftrightarrow y^2+6-y=5y+3\)
\(\Leftrightarrow y^2-6y+3=0\)
\(\Leftrightarrow\left[{}\begin{matrix}y=3+\sqrt{6}\\y=3-\sqrt{6}\end{matrix}\right.\)
\(y=3+\sqrt{6}\Rightarrow x=3-\sqrt{6}\)
\(y=3-\sqrt{6}\Rightarrow x=3+\sqrt{6}\)
b, Trừ vế theo vế hai phương trình
\(3x^3-3y^3=y^2-x^2\)
\(\Leftrightarrow3\left(x-y\right)\left(x^2+xy+y^2+x+y\right)=0\)
Từ \(pt\left(1\right)\) \(3x^3=y^2+2>0\Rightarrow x>0\)
Tương tự \(y>0\)
\(\Rightarrow x^2+xy+y^2+x+y>0,\forall x;y\)
\(\Rightarrow x=y\)
\(pt\left(1\right)\Leftrightarrow3x^3=x^2+2\)
\(\Leftrightarrow3x^3-x^2-2=0\)
\(\Leftrightarrow\left(x-1\right)\left(3x^2+2x+2\right)=0\)
\(\Leftrightarrow x=y=1\left(\text{vì }3x^2+2x+2=2x^2+\left(x+1\right)^2+1>0\right)\)
Đáp án A: \(x + y > 3\) là bất phương trình bậc nhất hai ẩn x và y có a=1, b=1, c=3
Đáp án B: \({x^2} + {y^2} \le 4\) không là bất phương trình bậc nhất hai ẩn vì có \({x^2},{y^2}\)
Đáp án C: \(\left( {x - y} \right)\left( {3x + y} \right) \ge 1 \Leftrightarrow 3{x^2} - 2xy - {y^2} \ge 1\) không là bất phương trình bậc nhất hai ẩn vì có \({x^2},{y^2}\)
Đáp án D: \({y^3} - 2 \le 0\) không là bất phương trình bậc nhất hai ẩn vì có \({y^3}\).
Chọn A
Tham khảo:
a) Vẽ đường thẳng \(\Delta : - 2x + y - 1 = 0\) đi qua hai điểm \(A(0;1)\) và \(B\left( { - 1; - 1} \right)\)
Xét gốc tọa độ \(O(0;0).\) Ta thấy \(O \notin \Delta \) và \( - 2.0 + 0 - 1 = - 1 < 0\)
Do đó, miền nghiệm của bất phương trình là nửa mặt phẳng kể cả bờ \(\Delta \), chứa gốc tọa độ O
(miền không gạch chéo trên hình)
b) Vẽ đường thẳng \(\Delta : - x + 2y = 0\) đi qua hai điểm \(O(0;0)\) và \(B\left( {2;1} \right)\)
Xét điểm \(A(1;0).\) Ta thấy \(A \notin \Delta \) và \( - 1 + 2.0 = - 1 < 0\)
Do đó, miền nghiệm của bất phương trình là nửa mặt phẳng không kể bờ \(\Delta \), không chứa điểm A (1;0)
(miền không gạch chéo trên hình)
c) Vẽ đường thẳng \(\Delta :x - 5y = 2\) đi qua hai điểm \(A(2;0)\) và \(B\left( { - 3; - 1} \right)\)
Xét gốc tọa độ \(O(0;0).\) Ta thấy \(O \notin \Delta \) và \(0 - 5.0 = 0 < 2\)
Do đó, miền nghiệm của bất phương trình là nửa mặt phẳng không kể bờ \(\Delta \), chứa gốc tọa độ O
(miền không gạch chéo trên hình)
d) Vẽ đường thẳng \(\Delta : - 3x + y + 2 = 0\) đi qua hai điểm \(A(0; - 2)\) và \(B\left( {1;1} \right)\)
Xét điểm \(O(0;0).\) Ta thấy \(O \notin \Delta \) và \( - 3.0 + 0 + 2 = 2 > 0\)
Do đó, miền nghiệm của bất phương trình là nửa mặt phẳng kể cả bờ \(\Delta \), không chứa điểm O (0;0)
(miền không gạch chéo trên hình)
e) Ta có: \(3(x - 1) + 4(y - 2) < 5x - 3 \Leftrightarrow - 2x + 4y - 8 < 0 \Leftrightarrow - x + 2y - 4 < 0\)
Vẽ đường thẳng \(\Delta : - x + 2y -4 = 0\) đi qua hai điểm \(A(0;2)\) và \(B\left( {-4;0} \right)\)
Xét điểm \(O(0;0).\) Ta thấy \(O \notin \Delta \) và \( - 0 + 2.0 -4 = -4 < 0\)
Do đó, miền nghiệm của bất phương trình là nửa mặt phẳng không kể bờ \(\Delta \), chứa điểm O (0;0)
(miền không gạch chéo trên hình)
Điều kiện : \(y^2-2\ge0;xy^2-2x-2\ge0\)
\(x^2+\left(y^2-y-1\right)\sqrt{x^2+2}-y^3+y+2=0\)
\(\Leftrightarrow\left(\sqrt{x^2+2}-y\right)\left(y^2+\sqrt{x^2+2}-1\right)=0\)
\(y=\sqrt{x^2+2}\Leftrightarrow\begin{cases}y\ge0\\y^2=x^2+2\end{cases}\) (Do \(y^2+\sqrt{x^2+2}-1>0\) với mọi x, y)
Thay \(y^2=x^2+2\) vào phương trình thứ 2 của hệ ta được phương trình như sau với điều kiện \(x\ge\sqrt[3]{2}\)
\(\sqrt[3]{x^2-1}-\sqrt{x^3-2}+x=0\Leftrightarrow\left(\sqrt[3]{x^2-1}-2\right)+x-3=\sqrt{x^3-2}-5\)
\(\Leftrightarrow\left(x-3\right)\left[\frac{x+3}{\sqrt[3]{\left(x^2-1\right)^2}+2\sqrt[3]{x^2-1}+4}+1\right]=\frac{\left(x-3\right)\left(x^2+3x+9\right)}{\sqrt{x^3-2}+5}\)
\(\begin{cases}x=3\\\left[\frac{x+3}{\sqrt[3]{\left(x^2-1\right)^2}+2\sqrt[3]{x^2-1}+4}+1\right]=\frac{\left(x-3\right)\left(x^2+3x+9\right)}{\sqrt{x^3-2}+5}\end{cases}\) (*)
Ta thấy :
#) \(\frac{x^2+3x+9}{\sqrt{x^3-2}+5}>2\Leftrightarrow x^2+3x-1>2\sqrt{x^3-2}\)
\(\Leftrightarrow\left(x^2+3x-1\right)^2>4\left(x^3-2\right)\)
\(\Leftrightarrow\left(x^2+x\right)^2+\left(x-3\right)^2+5x^2>0\) với mọi x
#) \(\frac{x+3}{\sqrt[3]{\left(x^2-1\right)^2}+2\sqrt[3]{x^2-1}+4}+1<2\Leftrightarrow\sqrt[3]{\left(x^2-1\right)^2}+2\sqrt[3]{x^2-1}+1>x\) (**)
Đặt \(t=\sqrt[3]{x^2-1},t>0\), khi đó (**) trở thành :
\(t^2+2t+1>\sqrt{t^3+1}\Leftrightarrow\left(t^2+2t+1\right)^2>t^3+1\Leftrightarrow t^4+3t^3+6t^2+4t>0\)
Đúng với mọi t>0
Suy ra (*) vô nghiệm
Vậy hệ có 1 nghiệm duy nhất \(\left(x,y\right)=\left(3;\sqrt{11}\right)\)
= : Cho đơn th ứ c A= 2 xy 2 .( 1 2 22 x y x ) a)Thu g ọ n đơn th ứ c b)Tìm b ậ c c ủ a đơn th ứ c thu g ọ n c)Xác đ ị nh ph ầ n h ệ s ố ,ph ầ n bi ế n c ủ a đơn th ứ c thu g ọ n d)Tính giá tr ị c ủ a đơn th ứ c t ạ i x=2 ; y= - 1 e) Ch ứ ng minh r ằ ng A luôn nh ậ n giá tr ị dương v ớ i m ọ i x 0 và y 0 Câu 2: Tính a) 5 x 2 y - 3 x 2 y +7 x 2 y b) 1 2 32 x y z + 2 3 32 x y z - 32 3 x y z 4 c) 3 3 3 3 1 5 x y x y x y 4 2 8
Ta có: 2 x y + y 2 − 4 x − 3 y + 2 = 0 x y + 3 y 2 − 2 x − 14 y + 16 = 0 ⇒ 2 x y + y 2 − 4 x − 3 y + 2 = 0 2 x y + 6 y 2 − 4 x − 28 y + 32 = 0
⇒ 5 y 2 − 25 y + 30 = 0 ⇒ y = 3 ; y = 2
Khi y = 3 thì phương trình đầu trở thành 6 x + 9 - 4 x - 9 + 2 = 0 ⇔ x = - 1
Khi y = 2 thì phương trình đầu trở thành 4 x + 4 - 4 x - 6 + 2 = 0
⇔ 0 x = 0 ⇔ x ∈ R
Đáp án cần chọn là: A