Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lỗi nên bạn tự vẽ hình nha !!
Hình lỗi !!!
=> Tọa độ A là :
\(\hept{\begin{cases}x+y=2\\2x+6y=-3\end{cases}\Leftrightarrow\hept{\begin{cases}x=\frac{15}{4}\\y=\frac{-7}{4}\end{cases}}}\)
=> Tọa độ B là :
\(\hept{\begin{cases}x+y=2\\x-y=0\end{cases}\Leftrightarrow x=y=1}\)
<=> Tọa độ C là
C(-2 -1 ,1 - 1 )
=> C ( -3 ; 0 )
Vậy A ( \(\frac{15}{4};\frac{-7}{4}\))
B ( 1 ; 1 )
C( -3;0)
Giả sử tam giác ABC có M là trung điểm BC, AB thuộc \(d_1\), AC thuộc \(d_2\).
Gọi \(C=\left(m;2-m\right)\in\left(d_2\right)\Rightarrow B=\left(-2-m;m\right)\)
Mà \(B\in\left(d_1\right)\Rightarrow2\left(-2-m\right)+6m+3=0\)
\(\Leftrightarrow m=\dfrac{1}{4}\)
\(\Rightarrow C=\left(\dfrac{1}{4};\dfrac{7}{4}\right)\)
Phương trình đường thẳng BC: \(\dfrac{x+1}{-1-\dfrac{1}{4}}=\dfrac{y-1}{1-\dfrac{7}{4}}\Leftrightarrow x-3y+4=0\)
Mình làm 1 câu, bạn làm 3 câu còn lại hoàn toàn tương tự:
Do B thuộc AB nên tọa độ B có dạng: \(B\left(b;-2b+2\right)\)
Do C thuộc AC nên tọa độ C có dạng: \(C\left(c;\frac{-c+3}{3}\right)\)
Do M là trung điểm BC nên:
\(\left\{{}\begin{matrix}x_B+x_C=2x_M\\y_B+y_C=2y_M\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}b+c=-2\\-2b+2+\frac{-c+3}{3}=2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}b+c=-2\\-2b-\frac{c}{3}=-1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}b=1\\c=-3\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}B\left(1;0\right)\\C\left(-3;2\right)\end{matrix}\right.\) \(\Rightarrow\overrightarrow{BC}=\left(-4;2\right)\)
\(\Rightarrow\) Đường thẳng BC nhận \(\left(1;2\right)\) là 1 vtpt
Phương trình BC:
\(1\left(x-1\right)+2\left(y-0\right)=0\Leftrightarrow x+2y-1=0\)
Do A là giao điểm AB, AC nên tọa độ thỏa mãn:
\(\left\{{}\begin{matrix}2x+y-12=0\\x+4y-6=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=6\\y=0\end{matrix}\right.\) \(\Rightarrow A\left(6;0\right)\)
Do B thuộc AB nên tọa độ có dạng: \(B\left(b;-2b+12\right)\)
Do C thuộc AC nên tọa độ có dạng: \(C\left(-4c+6;c\right)\)
Do M là trung điểm cạnh BC nên theo công thức trung điểm:
\(\left\{{}\begin{matrix}b-4c+6=2.0\\-2b+12+c=2.5\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}b-4c=-6\\-2b+c=-2\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}b=2\\c=2\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}B\left(2;8\right)\\C\left(-2;2\right)\end{matrix}\right.\)