Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
4A=\(\frac{4}{3.7}+\frac{4}{7.11}+...+\frac{4}{107.111}\)
4A=\(\frac{1}{3}-\frac{1}{7}+\frac{1}{7}-\frac{1}{11}+...+\frac{1}{107}-\frac{1}{111}\)
4A=\(\frac{1}{3}-\frac{1}{111}=\frac{12}{37}\)
A=\(\frac{12}{37}:4=\frac{12}{37}.\frac{1}{4}=\frac{3}{37}\)
\(A=\frac{4}{3.7}+\frac{4}{7.11}+....+\frac{4}{95.99}\)
\(=\frac{1}{3}-\frac{1}{7}+\frac{1}{7}-\frac{1}{11}+...+\frac{1}{95}-\frac{1}{99}\)
\(=\frac{1}{3}-\frac{1}{99}\)
\(=\frac{32}{99}\)
Ta có A = \(\frac{4}{3.7}+\frac{4}{7.11}+..............+\frac{4}{107.111}\)
=> A = \(\frac{1}{3}-\frac{1}{7}+\frac{1}{7}-\frac{1}{11}+.............+\frac{1}{107}-\frac{1}{111}\)
A = \(\frac{1}{3}-\frac{1}{111}=\frac{12}{37}\)
k nha bạn
\(\frac{1}{3.7}+\frac{1}{7.11}+\frac{1}{11.15}+...+\frac{1}{x\left(x+4\right)}=\frac{43}{552}\)
\(\Leftrightarrow\frac{1}{4}.\left(\frac{1}{3}-\frac{1}{7}+\frac{1}{7}-\frac{1}{11}+\frac{1}{11}-\frac{1}{15}+...+\frac{1}{x}-\frac{1}{x+4}\right)=\frac{43}{552}\)
\(\Leftrightarrow\frac{1}{4}.\left(\frac{1}{3}-\frac{1}{x+4}\right)=\frac{43}{552}\)
\(\Leftrightarrow\frac{1}{3}-\frac{1}{x+4}=\frac{43}{552}\div\frac{1}{4}\)
\(\Leftrightarrow\frac{1}{3}-\frac{1}{x+4}=\frac{43}{138}\Leftrightarrow\frac{1}{x+4}=\frac{1}{3}-\frac{43}{138}\)
\(\Leftrightarrow\frac{1}{x+4}=\frac{1}{46}\Leftrightarrow x+4=46\Rightarrow x=46-4=42\)
Vậy x = 42
\(s=\frac{1}{3.7}+\frac{1}{7.11}+...+\frac{1}{x\left(x+4\right)}=\)\(\frac{43}{552}\)
\(\Rightarrow S=\frac{4}{4}\left(\frac{1}{3.7}+\frac{1}{7.11}+...+\frac{1}{x\left(x+4\right)}\right)=\frac{43}{552}\)
\(\Rightarrow S=\frac{1}{4}\left(\frac{4}{3.7}+\frac{4}{7.11}+...+\frac{4}{x\left(x+4\right)}\right)=\frac{43}{552}\)
\(\Rightarrow S=\frac{1}{4}\left(\frac{4}{3}-\frac{4}{7}+\frac{4}{7}-\frac{4}{11}+...+\frac{4}{x}-\frac{4}{x+4}\right)=\frac{43}{552}\)
\(\Rightarrow S=\frac{1}{4}\left(\frac{4}{3}-\frac{4}{x+4}\right)=\frac{43}{552}\)
\(\Rightarrow\frac{4}{3}-\frac{4}{x+4}=\frac{43}{552}:\frac{1}{4}\)
\(\frac{\Rightarrow4}{3}-\frac{4}{x+4}=\frac{43}{138}\)
\(\frac{\Rightarrow4}{x+4}=\frac{4}{3}-\frac{43}{138}=\frac{47}{46}\)
\(\Rightarrow x+4=4:\frac{47}{46}=\frac{184}{47}\)
\(\Rightarrow x=\frac{184}{47}-4=\frac{-4}{47}\)
\(\frac{4}{3.7}+\frac{4}{7.11}+\frac{4}{11.15}+....+\frac{4}{103.107}\)
=\(\frac{1}{3.7}+\frac{1}{7.11}+\frac{1}{11.15}+...+\frac{1}{103.107}\)
=\(\frac{1}{3.107}\)
=\(\frac{1}{321}\)
k mk nha bn
=
Ta thấy \(\frac{1}{3}-\frac{1}{7}=\frac{7-3}{3.7}=\frac{4}{3.7}\)
\(\frac{1}{7}-\frac{1}{11}=\frac{11-7}{7.11}=\frac{4}{7.11}\)
..........................
\(\frac{1}{1023}-\frac{1}{1027}=\frac{1027-1023}{1023.1027}=\frac{4}{1023.1027}\)
=> \(\frac{4}{3.7}+\frac{4}{7.11}+....+\frac{4}{1023.1027}=\frac{1}{3}-\frac{1}{7}+\frac{1}{7}-\frac{1}{11}+....+\frac{1}{1023}-\frac{1}{1027}\)
=> =\(\frac{1}{3}-\frac{1}{1027}=\frac{1024}{3.1027}\)
Ta có: \(\frac{4}{3.7}+\frac{4}{7.11}+\frac{4}{11.15}+...+\frac{4}{1023.1027}\)
\(=\frac{1}{3}-\frac{1}{7}+\frac{1}{7}-\frac{1}{11}+\frac{1}{11}-\frac{1}{15}+...+\frac{1}{1023}-\frac{1}{1027}\)
\(=\frac{1}{3}-\frac{1}{1027}=\frac{1024}{3081}\)
A=1/3*7+1/7*11+..+1/95*99
=> 4A=4/3*7+4/7*11+..+4/95*99
=>4A=1/3-1/7+1/7-1/11+...+1/95-1/99=1/3-1/99=32/99
=>A=8/99
\(=\frac{1}{4}\left(\frac{4}{3.7}+\frac{4}{7.11}+\frac{4}{11.15}+.......+\frac{4}{95.99}\right)=\frac{1}{4}\left(\frac{1}{3}-\frac{1}{99}\right)\)
\(=\frac{1}{4}.\frac{32}{99}=\frac{8}{99}\)