Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: n2+3n+5=n2+n+2n+5=n.(n+1)+2n+2+3=n.(n+1)+2.(n+1)+3=(n+2).(n+1)+2
Vì (n+2).(n+1) chia hết cho n+1.
=>(n+2).(n+1)+2 : n+1(dư 2)
Vậy n2+3n+5:n+1(dư 2)
Thực hiện phép chia, ta được:Thương của A chia cho B là n3 – 6n2 + 11n – 6Ta có: 3 2 3 226 11 6 12 6 6( 1) .( 1) 6.(2 1)n n n n n n nn n n n n− + − = − + − −= − + + − −Vì (n-1).n.(n+1) là tích của 3 số nguyên liên tiếp nên tích đó vừa chia hết cho 2, vừa chia hết cho 3 suy ra tích đó chia hết cho 6Mặt khác 6(2n-n2-1) chia hết cho 6=> Th¬ng cña phÐp chia A cho B lµ béi sè cña 6
Xem nội dung đầy đủ tại:https://123doc.org//document/4209455-de-da-hsg-toan-8-huyen-tam-duong-2016-2017.htm
a: \(n^3-2⋮n-2\)
=>\(n^3-8+6⋮n-2\)
=>\(6⋮n-2\)
=>\(n-2\in\left\{1;-1;2;-2;3;-3;6;-6\right\}\)
=>\(n\in\left\{3;1;4;0;5;-1;8;-4\right\}\)
b: \(n^3-3n^2-3n-1⋮n^2+n+1\)
=>\(n^3+n^2+n-4n^2-4n-4+3⋮n^2+n+1\)
=>\(3⋮n^2+n+1\)
=>\(n^2+n+1\in\left\{1;-1;3;-3\right\}\)
mà \(n^2+n+1=\left(n+\dfrac{1}{2}\right)^2+\dfrac{3}{4}>=\dfrac{3}{4}\forall n\)
nên \(n^2+n+1\in\left\{1;3\right\}\)
=>\(\left[{}\begin{matrix}n^2+n+1=1\\n^2+n+1=3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}n^2+n=0\\n^2+n-2=0\end{matrix}\right.\)
=>\(\left[{}\begin{matrix}n\left(n+1\right)=0\\\left(n+2\right)\left(n-1\right)=0\end{matrix}\right.\Leftrightarrow n\in\left\{0;-1;-2;1\right\}\)
Gọi thương của phép chia f(x) cho x là p(x)
thương của phép chia f(x) cho x-1 là q(x)
Thương và dư của phép chia f(x) cho x(x-1) là:h(x) và r(x)
\(\Rightarrow\hept{\begin{cases}f\left(x\right)=x.p\left(x\right)+1\left(1\right)\\f\left(x\right)=\left(x-1\right).q\left(x\right)+2\left(2\right)\\f\left(x\right)=x.\left(x-1\right).h\left(x\right)+r\left(x\right)\left(3\right)\end{cases}}\)
Xét biểu thức (3)
Do đa thức chia x.(x-1) có bậc là 2 nên r(x) có bậc <2
=> r(x) có dạng ax+b
=>f(x)=x.(x-1).h(x)+ax+b (4)
Do (4) đúng với mọi x=>(4) đúng với x=0,x=1
Với x=0 thay vào (4) ta được
f(0)=0.(0-1).h(0)+a.0+b
=> f(0)=b (5)
Với x=1 thay vào (4) ta được
f(1)=1.(1-1).h(1)+a.1+b
=>f(1)=a+b (6)
Lại có :từ(1) => f(0)=0.p(0)+1
=>f(0)=1 (7)
Từ (2) => f(1)=(1-1).q(1)+2
=> f(1)=2(8)
Từ (5),(7)=>b=1
Từ (6),(8)=>a+b=2
Suy ra a+b-b=2-1
=>a=1
=>ax+b=x+1
Vậy dư của đa thức f(x) cho x.(x-1) là x+1
Tk mk nha!!!!
*****Chúc bạn học giỏi*****
Rõ ràng đa thức \(x^3-1\) chia hết cho đa thức \(x^2+x+1\).
Ta tách: \(x^9+x^6+x^3+1=\left(x^9-1\right)+\left(x^6-1\right)+\left(x^3-1\right)+4=\left(x^3-1\right)\left(x^6+x^3+1\right)+\left(x^3-1\right)\left(x^3+1\right)+\left(x^3-1\right)+4\).
Từ đây suy ra đa thức đó chia cho đa thức \(x^2+x+1\) được đa thức dư là 4.
-Từ số 4! đến số 10! đều chia hết cho 20 do có thừa số 4.5=20.
-Mà 1!+2!+3!=1+2+6=91!+2!+3!=1+2+6=9 chia 20 dư 9 nên tổng đó chia 20 dư 9.
-Bạn ạ bạn tham khảo từ bài của mình thì ghi tham khảo nhé!