Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\begin{array}{l}\left( {2x + 3} \right).\left( {{x^2} - 5x + 4} \right)\\ = 2x.\left( {{x^2} - 5x + 4} \right) + 3.\left( {{x^2} - 5x + 4} \right)\\ = 2x.{x^2} - 2x.5x + 2x.4 + 3{x^2} - 3.5x + 3.4\\ = 2{x^3} - 10{x^2} + 8x + 3{x^2} - 15x + 12\\ = 2{x^3} + \left( { - 10{x^2} + 3{x^2}} \right) + \left( {8x - 15x} \right) + 12\\ = 2{x^3} - 7{x^2} - 7x + 12\end{array}\)
TL:
\(\left(x-y\right)\left(x^2+xy+y^2\right)\)
\(=x^3+x^2y+xy^2-yx^2-xy^2-y^3\)
\(=x^3-y^3\)
\(\left(x-y\right)\left(x^2+xy+y^2\right)\)
\(=x\left(x^2+xy+y^2\right)-y\left(x^2+xy+y^2\right)\)
\(=\left(x^3+x^2y+xy^2\right)-\left(x^2y+xy^2+y^3\right)\)
\(=x^3+x^2y+xy^2-x^2y-xy^2-y^3\)
\(=x^3-y^3\)
a) Ta có:
\(\begin{array}{l}\left( {x + 1} \right).\left( {{x^2} - x + 1} \right)\\ = {x^3} - {x^2} + x + {x^2} - x + 1\\ = {x^3} + \left( {{x^2} - {x^2}} \right) + \left( {x - x} \right) + 1 = {x^3} + 1\end{array}\)
b) Quy tắc nhân hai đa thức trong trường hợp một biến: ta lấy đơn thức của đa thức này nhân với từng đơn thức của đa thức kia rồi cộng các kết quả với nhau.
`a)`
`4x^3 * (-6x^3y)`
`= 4*(-6) * (x^3*x^3) * y`
`= -24x^6y`
`b)`
`(-2y)*(-5xy^2)`
`= (-2)*(-5)*x*(y*y^2)`
`= 10xy^3`
`c)`
`(-2a)^3 * (2ab)^2`
`= (-8a^3) * (4a^2b^2)`
`= (-8*4)*(a^3*a^2)*b^2`
`= -32a^5b^2`
a) \(4x^3\cdot\left(-6x^3y\right)\)
\(=\left(4\cdot-6\right)\cdot\left(x^3\cdot x^3\right)\cdot y\)
\(=-24x^6y\)
b) \(\left(-2y\right)\cdot\left(-5xy^2\right)\)
\(=\left(-2\cdot-5\right)\cdot\left(y\cdot y^2\right)\cdot x\)
\(=10xy^3\)
c) \(\left(-2a\right)^3\cdot\left(2ab\right)^2\)
\(=-8a^3\cdot4a^2b^2\)
\(=\left(-8\cdot4\right)\cdot\left(a^3\cdot a^2\right)\cdot b^2\)
\(=-32a^5b^2\)
Bài giải:
[3(x – y)4 + 2(x – y)3 – 5(x – y)2] : (y – x)2
= [3(x – y)4 + 2(x – y)3 – 5(x – y)2] : [-(x – y)]2
= [3(x – y)4 + 2(x – y)3 – 5(x – y)2] : (x – y)2
= 3(x – y)4 : (x – y)2 + 2(x – y)3 : (x – y)2 + [– 5(x – y)2 : (x – y)2]
= 3(x – y)2 + 2(x – y) – 5
Bài 65: (SGK/29):
Cách 1:
[ 3(x-y)4 + 2(x-y)3 - 5(x-y)2] : (y-x)2
= [ 3(x-y)4 + 2(x-y)3 - 5(x-y)2] : (x-y)2
= 3.(x-y)4 : (x-y)2 + 2.(x-y)3 : (x-y)2 - 5.(x-y)2 : (x-y)2
= 3.(x-y)2 + 2.(x-y) - 5
Cách theo SGK:
[ 3(x-y)4 + 2(x-y)3 - 5(x-y)2] : (y-x)2
Đặt (x-y) = z => (y-x) = z
=> (x-y)2 = z2 = (y-x)2 = (-z2) = z2
Ta có: ( 3.z4 + 2.z3 - 5.z2) : z2
= (3z4 : z2) + (2z3 : z2) - (5z2 : z2)
= 3z2 + 2z - 5
Cách 2:
[ 3(x-y)4 + 2(x-y)3 - 5(x-y)2] : (y-x)2
= (x-y)2 [ 3(x-y)2 + 2(x-y) - 5] : (x-y)2
= 3(x-y)2 + 2(x-y) - 5
b)\(\frac{9x^4-6x^3+15x^2+2x+1}{3x^2-2x+5}=\frac{3x^2.\left(3x^2-2x+5\right)+2x+1}{3x^2-2x+5}=3x^2+\frac{2x+1}{3x^2-2x+5}\)
=> đa thức dư trong phép chia là 2x+1
\(\frac{x^3+2x^2-3x+9}{x+3}=\frac{x^3+9x^2+27x+27-7x^2-30x-18}{x+3}=\frac{\left(x+3\right)^3-7x^2-30x-18}{x+3}\)
\(\left(x+3\right)^2-\frac{7x^2+21x+9x+18}{x+3}=\left(x+3\right)^2-\frac{7x.\left(x+3\right)+9.\left(x+3\right)-9}{x+3}\)
\(=\left(x+3\right)^2-\frac{\left(7x+9\right).\left(x+3\right)-9}{x+3}=\left(x+3\right)^2-\left(7x+9\right)-\frac{9}{x+3}\)
=> đa thức dư trong phép chia là 9
p/s: t mới lớp 7_sai sót mong bỏ qua :>
Câu 1:
Nhân từng hạng tử của đa thức/đơn thức này cho từng hạng tử của đa thức/đơn thức kia. Sau đó, thu gọn lại ta được kết quả cần tìm
Câu 2:
Có 7 hằng đẳng thức. Công thức:
1: \(\left(a+b\right)^2=a^2+2ab+b^2\)
2: \(\left(a-b\right)^2=a^2-2ab+b^2\)
3: \(a^2-b^2=\left(a-b\right)\left(a+b\right)\)
4: \(\left(a+b\right)^3=a^3+3a^2b+3ab^2+b^3\)
5: \(\left(a-b\right)^3=a^3-3a^2b+3ab^2-b^3\)
6: \(a^3+b^3=\left(a+b\right)\left(a^2-ab+b^2\right)\)
7: \(a^3-b^3=\left(a-b\right)\left(a^2+ab+b^2\right)\)
\(x^2-\left(y-3\right)^2-4x+4\)
\(=x^2-\left(y^2-6y+9\right)-4x+4\)
\(=x^2-y^2+6y-9-4x+4\)
\(=\left(x^2-4x+4\right)-\left(y^2-6y+9\right)\)
\(=\left(x-2\right)^2-\left(y-3\right)^2\)
\(=\left[\left(x-2\right)-\left(y-3\right)\right]\left[\left(x-2\right)+\left(y-3\right)\right]\)
\(=\left(x-y+5\right)\left(x+y-5\right)\)
1.
x2 - ( y - 3 )2 - 4x + 4
= ( x2 - 4x + 4 ) - ( y - 3 )2
= ( x - 2 )2 - ( y - 3 )2
= [ ( x - 2 ) - ( y - 3 ) ][ ( x - 2 ) + ( y - 3 ) ]
= ( x - 2 - y + 3 )( x - 2 + y - 3 )
= ( x - y + 1 )( x + y - 5 )
2.
a) Ta có : 2x4 + 8x3 + 9x2 - 4x - 5
= 2x4 + 10x2 - x2 + 8x3 - 4x - 5
= ( 2x4 - x2 ) + ( 8x3 - 4x ) + ( 10x2 - 5 )
= x2( 2x2 - 1 ) + 4x( 2x2 - 1 ) + 5( 2x2 - 1 )
= ( 2x2 - 1 )( x2 + 4x + 5 )
=>(2x4 + 8x3 + 9x2 - 4x - 5) : ( 2x2 - 1 ) = x2 + 4x + 5
b) Ta có : x2 + 4x + 5 = ( x2 + 4x + 4 ) + 1 = ( x + 2 )2 + 1 ≥ 1 > 0 ∀ x
=> đpcm
đặt \(x^2+4x+8=a\)
=> \(A=a^2+3ax+2x^2=a^2+ax+2ax+2x^2=a\left(a+x\right)+2x\left(a+x\right)\)
\(=\left(a+x\right)\left(a+2x\right)\)
b) ta có
\(B=\left(x+1\right)\left(x+7\right)\left(x+3\right)\left(x+5\right)+15=\left(x^2+8x+7\right)\left(x^2+8x+15\right)+15\)
đặt \(x^2+8x+11=a\)
=> \(B=\left(a-4\right)\left(a+4\right)+15=a^2-16+15=a^2-1=\left(a-1\right)\left(a+1\right)\)
\(=\left(x^2+8x+10\right)\left(x^2+8x+12\right)=\left(x^2+8x+10\right)\left(x^2+6x+2x+12\right)\)
\(=\left(x^2+8x+10\right)\left[x\left(x+6\right)+2\left(x+6\right)\right]=\left(x^2+8x+10\right)\left(x+6\right)\left(x+2\right)\)
\(\begin{array}{l}\left( {5{x^2}} \right).\left( {3{x^2} - x - 4} \right)\\ = 5{x^2}.3{x^2} - 5{x^2}.x - 5{x^2}.4\\ = 15{x^4} - 5{x^3} - 20{x^2}\end{array}\)