Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 3:
a: Để phương trình có nghiệm kép thì \(\left(2m-1\right)^2-4\left(m^2+3\right)=0\)
\(\Leftrightarrow4m^2-4m+1-4m^2-12=0\)
hay m=-11/4
5:
(d) vuông góc 2x-y-2018=0
=>(d): x+2y+c=0
(C): x^2+4x+4+y^2-6y+9-25=0
=>(x+2)^2+(y-3)^2=25
=>R=5; I(-2;3)
Theo đề, ta có: d(I;(d))=5
=>\(\dfrac{\left|1\cdot\left(-2\right)+2\cdot3+c\right|}{\sqrt{5}}=5\)
=>|c+4|=5căn 5
=>c=5căn5-4 hoặc c=-5căn 5-4
Số hạng chứa x^15 sẽ là \(\left(a+b\right)x^{15}\), với a là hệ số của x^10 trong (3x+4)^10, b là hệ số của x^5 trong (2x-1)^5
(3x+4)^10
SHTQ là: \(C^k_{10}\cdot\left(3x\right)^{10-k}\cdot4^k=C^k_{10}\cdot3^{10-k}\cdot4^k\cdot x^{10-k}\)
số hạng chứa x^10 tương ứng với 10-k=10
=>k=0
=>\(a=C^0_{10}\cdot3^{10}\cdot4^0=59049\)
(2x-1)^5
SHTQ là: \(C^k_5\cdot\left(2x\right)^{5-k}\cdot\left(-1\right)^k=C^k_5\cdot2^{5-k}\cdot\left(-1\right)^k\cdot x^{5-k}\)
SH chứa x^5 tương ứng với 5-k=5
=>k=0
=>\(b=C^0_5\cdot2^5\cdot\left(-1\right)^0=32\)
=>Số cần tìm là 59081x15
Sai thì thôi nha :>
Theo đề ra: ABCD là hình bình hành
\(vectoAD+vectoAB=vectoAC\) và \(vectoAB+vectoAC=vectoBD\)
\(\Leftrightarrow vectoAD=-vectoAB+vectoAC\)
\(\Leftrightarrow vectoAD=vectoAB+vectoAC-2vectoAB=vectoBD-2vectoAB=b-2a\)
\(\overrightarrow{BD}=\overrightarrow{BA}+\overrightarrow{BC}=-\overrightarrow{AB}+\overrightarrow{AD}\)
\(\overrightarrow{AC}=\overrightarrow{AB}+\overrightarrow{AD}\)
suy ra \(2\overrightarrow{AD}=\overrightarrow{BD}+\overrightarrow{AC}\Leftrightarrow\overrightarrow{AD}=\frac{\overrightarrow{BD}+\overrightarrow{AC}}{2}=\frac{a+b}{2}\).
Gọi đàn thiên nga là x , ta có :
x + \(\frac{1}{2}\) x + 2 = 200
x + \(\frac{1}{2}\) x = 200 - 2 = 198
x . ( 1 + \(\frac{1}{2}\) ) = 198
x . \(\frac{3}{2}\) = 198
x = 198 : \(\frac{3}{2}\)
x = 132
Vậy đàn thiên nga có 132 con