Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Có \(10^{20}+8\)là tổng của hai số chẵn nên chia hết cho \(2\).
\(10^{20}+8=10...08\)có tổng các chữ số là \(1+8=9\)chia hết cho \(9\)nên \(10^{20}+8\)chia hết cho \(9\).
Mà \(\left(2,9\right)=1\)nên \(10^{20}+8\)chia hết cho \(2.9=18\).
1) \(3^x+3^{x+1}+3^{x+2}=351\)
\(\Rightarrow3^x\left(1+3^1+3^2\right)=351\)
\(\Rightarrow3^x.13=351\)
\(\Rightarrow3^x=27\)
\(\Rightarrow3^x=3^3\)
\(\Rightarrow x=3\)
2) \(C=2+2^2+2^3+2^4+...+2^{97}+2^{98}+2^{99}+2^{100}\)
\(\Rightarrow C=\left(2+2^2+2^3+2^4\right)+2^4\left(2+2^2+2^3+2^4\right)...+2^{96}\left(2+2^2+2^3+2^4\right)\)
\(\Rightarrow C=30+2^4.30...+2^{96}.30\)
\(\Rightarrow C=\left(1+2^4+...+2^{96}\right).30⋮30\)
mà \(30=5.6\)
\(\Rightarrow C⋮5\left(dpcm\right)\)
1,
Có \(3^x\)+ \(3^{x+1}\) + \(3^{x+2}\) = \(351\)
=> \(3^x\) + \(3^x\).\(3\) + \(3^x\).\(9\) = \(351\)
=> \(3^x\).\(13\) = \(351\)
=> \(3^x\) = \(27\)
=> \(x\) = \(3\)
2,
C = \(2\) + \(2^2\) + \(2^3\) + ... + \(2^{100}\)
2C = \(2^2\) + \(2^3\) + \(2^4\) + ... + \(2^{101}\)
2C - C = \(2^{101}\) - \(2\)
C = \(2^{101}\) - \(2\)
C = \(2\).\(\left(2^{100}-1\right)\)
C = 2.\(\left(\left(2^5\right)^{20}-1^{20}\right)\)
Có \(2^5\) \(-1\) \(⋮\) 5
=> \(\left(\left(2^5\right)^{20}-1^{20}\right)\) \(⋮\) 5
=> C \(⋮\) 5
3,
Xét \(\overline{abcdeg}\)
= \(\overline{ab}\).\(10000\) + \(\overline{cd}\).\(100\) + \(\overline{eg}\)
= \(\left(\overline{ab}+\overline{cd}+\overline{eg}\right)\) + \(9.\left(1111.\overline{ab}+11.\overline{cd}\right)\)
Có\(\left\{{}\begin{matrix}9.\left(1111.\overline{ab}+11.\overline{cd}\right)⋮9\left(1111.\overline{ab}+11.\overline{cd}\inℕ^∗\right)\\\overline{ab}+\overline{cd}+\overline{eg}⋮9\end{matrix}\right.\)
=> \(\overline{abcdeg}⋮9\)
4,
S = \(3^0+3^2+3^4+...+3^{2002}\)
9S = \(3^2+3^4+3^6+...+3^{2004}\)
9S - S = \(3^2+3^4+3^6+...+3^{2004}\) - (\(3^0+3^2+3^4+...+3^{2002}\))
8S = \(3^{2004}-1\)
=> 8S \(< 3^{2004}\)
Ta có: \(9a+11b⋮19\)
<=> \(11\left(9a+11b\right)⋮19\)
<=> \(99a+121b⋮19\)
<=> \(99a+45b+4.19b⋮19\)
<=> \(9\left(11a+5b\right)⋮19\)
<=> \(11a+5b⋮19\)
Do đó: 9a + 11b chia hết cho 19 thì 5b + 11a chia hết cho 19 và ngược lại
Ta có: M = (9a + 11b) . (5b + 11a) chia hết cho 19 vì 19 là số nguyên tố
=> ít nhất 1 trong hai số: 9a + 11b và 5b + 11a chia hết cho 19
+) Nếu 9a + 11b chia hết cho 19 => 5b + 11a chia hết cho 19 => M chia hết cho 19.19 hay M chia hết cho 361
+) +) Nếu 11a + 5b chia hết cho 19 => 11b + 9a chia hết cho 19 => M chia hết cho 19.19 hay M chia hết cho 361
Vậy M chia hêt cho 361
\(x^2+x+35=x\left(x+1\right)+35\)
mà \(\left\{{}\begin{matrix}x\left(x+1\right)⋮2\\35⋮̸2\end{matrix}\right.\)
\(\Rightarrow x\left(x+1\right)+35⋮̸2\)
\(\Rightarrow dpcm\)
\(x^2+x+35=x\left(x+1\right)+35\)
mà \(x\left(x+1\right)\) là 2 số liên tiếp nên chia hết cho 2
35 là số lẻ không chia hết cho 2
\(\Rightarrow x\left(x+1\right)+35\) không chia hết cho 2
\(\Rightarrow dpcm\)
ta thấy tổng các chữ số chia hết cho 9 thì số đó chia hết cho 9
ta có 100^15+8=1000000000000000000000000000008 và số đó có tổng các chữ số là:1+8=9
9 chia hết cho 9 nên (100^15+8)chia hết cho 9
nhớ kết bạn với tớ nha!
cảm ơn các bạn nhiều