Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Nếu Δ > 0 thì từ phương trình (2) suy ra x + b/2a = ± √Δ/2a
Do đó,phương trình (1) có hai nghiệm x 1 = ( - b + √ Δ ) / 2 a ; x 2 = ( - b - √ Δ ) / 2 a
b) Nếu Δ = 0 thì từ phương trình (2) suy ra ( x + b / 2 a ) 2 = 0
Do đó,phương trình (1) có nghiệm kép x = (-b)/2a
Nếu Δ > 0 thì từ phương trình (2) suy ra x + b/2a = ± √Δ/2a
Do đó,phương trình (1) có hai nghiệm x1 = (-b + √Δ)/2a; x2 = (-b-√Δ)/2a
ta có :
\(\sqrt{2}a^2+a-1=0\Leftrightarrow\sqrt{2}a^2=1-a\) nên ta có \(a\le1\)
\(\Rightarrow2a^4=a^2-2a+1\)Vậy \(C=\frac{2a-3}{\sqrt{2\left(a^2-4a+4\right)}+2a^2}=\frac{2a-3}{2a^2+\sqrt{2}\left(2-a\right)}=\frac{2a-3}{\sqrt{2}\left(\sqrt{2}a^2-a+2\right)}\)
\(=\frac{2a-3}{\sqrt{2}\left(1-a-a+2\right)}=\frac{2a-3}{\sqrt{2}\left(3-2a\right)}=-\frac{1}{\sqrt{2}}\)
a) pt có nghiệm kép \(\Leftrightarrow\)\(\Delta=45-12m=0\)\(\Leftrightarrow\)\(m=\frac{15}{4}\)
b) Viet \(\hept{\begin{cases}x_1+x_2=1\\x_1x_2=3m-11\end{cases}}\)
\(2019=2017x_1+2018x_2=2017\left(x_1+x_2\right)+x_2=2017+x_2\)\(\Leftrightarrow\)\(x_2=2\)\(\Rightarrow\)\(x_1=-1\)
\(\Rightarrow\)\(3m-11=-2\)\(\Leftrightarrow\)\(m=3\)
a) Ta có: \(\Delta=45-12m\). Để pt có nghiệm kép thì:
\(\Delta=45-12m=0\)
\(\Leftrightarrow m=\frac{15}{4}\Rightarrow x_1=x_2=\frac{1}{2}\)
b) Để pt (1) có 2 nghiệm phân biệt x1;x2 thì \(\Delta=45-12m>0\)
\(\Leftrightarrow m< \frac{15}{4}\). Theo hệ thức Vi-et x1+x2=1; x1x2=3m-11. Khi đo hệ:
\(\hept{\begin{cases}x_1+x_2=1\\2017x_1+2018x_2=2019\end{cases}\Leftrightarrow\hept{\begin{cases}x_1=-1\\x_2=2\end{cases}}}\)
Mà ta có: x1x2=3m-11
<=> m=3 (nhận)
Vậy m=3 là giá trị cần tìm
- \(\Delta^'=m^2-\left(m-1\right)\left(m+1\right)=m^2-m^2+1=1>0\)vậy phương trình luôn có hai nghiệm với mọi \(m\ne1\)
- Theo viet ta có : \(\hept{\begin{cases}x_1+x_2=2m\\x_1x_2=m+1\end{cases}}\)\(\Rightarrow m+1=5\Rightarrow m=4\Rightarrow x_1+x_2=2m=2.4=8\)
- từ hệ thức viet ta khử m được hệ thức liên hệ giữa 2 nghiệm ko phụ thuộc m: thấy \(x_1+x_2-2x_2x_1=2m-2\left(m+1\right)=-2\)
- \(\frac{x_1}{x_2}+\frac{x_2}{x_1}=-\frac{5}{2}\Leftrightarrow\frac{x_1^2+x_2^2}{x_1x_2}=-\frac{5}{2}\Leftrightarrow\frac{\left(x_1+x_2\right)^2-2x_1x_2}{x_1x_2}=-\frac{5}{2}\)\(\Leftrightarrow\frac{4m^2-2m-2}{m+1}=-\frac{5}{2}\Rightarrow8m^2-4m-4=-5m-5\left(m\ne-1\right)\)\(\Leftrightarrow8m^2+m+1=0\left(vn\right)\)không có giá trị nào của m thỏa mãn
Xét phương trình 7x2 + 2(m – 1)x – m2 = 0 (1)
a) Phương trình có nghiệm khi ∆’ ≥ 0
Ta có: ∆’ = (m – 1)2 – 7(-m2) = (m – 1)2 + 7m2 ≥ 0 với mọi m
Vậy phương trình (1) luôn luôn có nghiệm với mọi giá trị của m
b) Gọi x1, x2 là hai nghiệm của phương trình (1)
Ta có:
\(x^2_1+x^2_2=\left(x_1+x_2\right)^2-2x_1x_2\\ =\left[\dfrac{-2\left(m-1\right)^2}{7}\right]-2\dfrac{\left(-m\right)^2}{7}\\ =\dfrac{4m^2-8m+4}{49}+\dfrac{2m^2}{7}\\ =\dfrac{4m^2-8m+4+14m^2}{49}\\ =\dfrac{18m^2-8m+4}{49}\)
Vậy \(x^2_1+x^2_2=\dfrac{18m^2-8m+4}{49}\).
Xét phương trình 7x2 + 2(m – 1)x – m2 = 0 (1)
a) Phương trình có nghiệm khi ∆’ ≥ 0
Ta có: ∆’ = (m – 1)2 – 7(-m2) = (m – 1)2 + 7m2 ≥ 0 với mọi m
Vậy phương trình (1) luôn luôn có nghiệm với mọi giá trị của m
b) Gọi x1, x2 là hai nghiệm của phương trình (1)
Ta có:
x\(\dfrac{1}{2}\)+x\(\dfrac{2}{2}\)=(x1+x2)2−2x1x2
=[\(\dfrac{-2\left(m-1\right)^2}{7}\)]-2\(\dfrac{\left(-m\right)^2}{7}\)
=\(\dfrac{4m^2-8m+4}{49}\)+\(\dfrac{2m^2}{7}\)
=\(\dfrac{4m^2-8m+4+14m^2}{49}\)
=\(\dfrac{18m^2-8m+4}{49}\)
vậy x\(\dfrac{2}{1}\)+x\(\dfrac{2}{2}\)=\(\dfrac{18m^2-8m+4}{49}\)
Nếu Δ = 0 thì từ phương trình (2) suy ra (x + b/2a)2 =0
Do đó,phương trình (1) có nghiệm kép x = (-b)/2a