Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có: 10^21 + 5=100...00(21 c/s 0) + 5=100....05(20 c/s 0)
-Để 100....05(20 c/s 0) chia hết cho 3 thì: 1+0+0+...+0+5 (20 c/s 0)=6 - chia hết cho 3. (1)
-mà 100....05(20 c/s 0) có c/s tận cùng là 5 => 100....05(20 c/s 0) chia hết cho 5 => 10^21 + 5 chia hết cho 5 (2)
Từ (1) và (2) => 10^21 + 5 chia hết cho 3 và 5
b)Ta có: 10^n + 8=100...00(n c/s 0) + 8=100....08(n-1 c/s 0)
-Để 100....08(n-1 c/s 0) chia hết cho 9 thì: 1+0+0+...+0+8 (n-1 c/s 0)=9 - chia hết cho 9. (1)
-mà 100....08(n-1 c/s 0) có c/s tận cùng là 8 => 100....08(n-1 c/s 0) chia hết cho 2 => 10^n + 8 chia hết cho 2 (2)
Từ (1) và (2) =>10^n + 8 chia hết cho 2 và 9 (n thuộc N*)
b: \(B=16^5+2^{15}\)
\(=\left(2^4\right)^5+2^{15}\)
\(=2^{20}+2^{15}\)
\(=2^{15}\left(2^5+1\right)=2^{15}\cdot33⋮33\)
c: \(45⋮9;99⋮9;180⋮9\)
Do đó: \(45+99+180⋮9\)
=>\(C⋮9\)
d: \(D=2+2^2+2^3+...+2^{60}\)
\(=\left(2+2^2+2^3\right)+\left(2^4+2^5+2^6\right)+...+\left(2^{58}+2^{59}+2^{60}\right)\)
\(=2\left(1+2+2^2\right)+2^4\cdot\left(1+2+2^2\right)+...+2^{58}\left(1+2+2^2\right)\)
\(=7\left(2+2^4+...+2^{58}\right)⋮7\)
\(D=2+2^2+2^3+...+2^{60}\)
\(=\left(2+2^2+2^3+2^4\right)+\left(2^5+2^6+2^7+2^8\right)+...+\left(2^{57}+2^{58}+2^{59}+2^{60}\right)\)
\(=2\left(1+2+2^2+2^3\right)+2^5\left(1+2+2^2+2^3\right)+...+2^{57}\left(1+2+2^2+2^3\right)\)
\(=15\left(2+2^5+...+2^{57}\right)\)
=>D chia hết cho cả 3 và 5
a, 10615 + 8 không chia hết cho 2 vì 8 ⋮ 2 nhưng 10615 không chia hết cho 2
10615 + 8 không chia hết cho 9 vì 1 + 6 + 1 + 5 + 8 = 21 không chia hết cho 9
c, B = 102010 - 4
10 \(\equiv\) 1 (mod 3)
102010 \(\equiv\) 12010 (mod 3)
4 \(\equiv\) 1(mod 3)
⇒ 102010 - 4 \(\equiv\) 12010 - 1 (mod 3)
⇒ 102010 - 4 \(\equiv\) 0 (mod 3)
⇒ 102010 - 4 \(⋮\) 3
a/ \(10^5+8=\left(100....0\right)+8=\left(100...8\right)⋮9\) \(\left(đpcm\right)\) (tổng các c/s chia hết cho 9)
b/ \(10^{2015}+2\left(100.....0\right)+2=\left(100....2\right)⋮3\left(đpcm\right)\) (tổng các c/c chia hết cho 3)
c/ \(10^n+11=\left(100...0\right)+11=\left(100.....011\right)⋮3\) (tổng các c/s chia hết cho 3)
d/ \(10^n+17=\left(100.....0\right)+17=\left(100...017\right)⋮3;9\) (tổng các c/s chia hết cho 3,9)
e/ \(10^n-1=\left(100....0\right)-1=\left(999.....99\right)⋮3;9\)
Làm thế khó nhìn. Em làm vầy dễ thấy hơn nè.
a/ \(10^5+8=\left(100000-1\right)+\left(8+1\right)=99999+9⋮9\)
b/ \(10^{2015}+2=\left(10...0-1\right)+\left(2+1\right)=\left(99...9\right)+3⋮3\)
c/ \(10^n+11=\left(100...0-1\right)+\left(11+1\right)=99...9+12⋮3\)
d/ \(10^n+17=\left(100...0-1\right)+\left(17+1\right)=99...9+18⋮3\)
\(10^n+17=\left(100...0-1\right)+\left(17+1\right)=99...9+18⋮9\)
Thế này dễ nhìn hơn e.