Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(1+tan^2a\right)\left(1-sin^2a\right)-\left(1+cot^2a\right)\left(1-cos^2a\right)\)
\(=\left(1+\dfrac{sin^2a}{cos^2a}\right).cos^2a-\left(1+\dfrac{cos^2a}{sin^2a}\right).sin^2a\)
\(=cos^2a+sin^2a-sin^2a-cos^2a=\)\(0\)
Vậy B=0
\(cos2a=cos^2a-sin^2a\)
\(=cos^2a-\left(1-cos^2a\right)\)
\(=2\cdot cos^2a-1\)
\(cos2a=cos^2a-sin^2a\)
\(=1-sin^2a-sin^2a\)
\(=1-2\cdot sin^2a\)
\(\tan^2\alpha-\sin^2\alpha\cdot\tan^2\alpha\)
\(=\tan^2\alpha\cdot\left(1-\cos^2\alpha\right)\)
\(=\tan^2\alpha\cdot\left(1-\cos\alpha\right)\left(1+\cos\alpha\right)\)
\(\tan^2\alpha-\sin^2\alpha\cdot\tan^2\alpha\\ =\tan^2\alpha\left(1-\sin^2\alpha\right)=\tan^2\alpha\cdot\cos^2\alpha\\ =\dfrac{\sin^2\alpha}{\cos^2\alpha}\cdot\cos^2\alpha=\sin^2\alpha\\ =1-\cos^2\alpha=\left(1-\cos\alpha\right)\left(1+\cos\alpha\right)\)
sin2a+cos2a=\(\left(\frac{AC}{BC}\right)^2+\left(\frac{AB}{BC}\right)^2=\frac{AC^2}{BC^2}=\frac{AB^2}{BC^2}=\frac{AC^2+AB^2}{BC^2}=\frac{BC^2}{BC^2}=1\)
=> đpcm