Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1/1002 + 1/1012 + ... + 1/1992 < 1/99.100 + 1/100.101 + ... + 1/198.199 = 1/99 - 1/100 + 1/100 - 1/101 + ... + 1/198 - 1/199 = 1/99 - 1/199
\(\Rightarrow\)Vậy 1/1002 + 1/1012 + ... + 1/1992 < 1/99 (vì 1/99 đã lớn hơn 1/99 - 1/199 rồi mà G lại còn bé hơn 1/99 - 1/199 nữa)
1/1002 + 1/1012 + ... + 1/1992 > 1/100.101 + ... + 1/199.200 = 1/100 - 1/101 + ... + 1/199 - 1/200 = 1/100 - 1/200 = 1/200
\(\Rightarrow\)Vậy 1/1002 + 1/1012 + ... + 1/1992 > 1/200
\(=\left(1+2+2^2+2^3\right)+2^4\left(1+2+2^2+2^3\right)+....+2^{92}\left(1+2+2^2+2^3\right)\)
\(=15+15.2^4+...+15.2^{92}\)
\(=15\left(1+2^4+...+2^{92}\right)⋮15\left(đpcm\right)\)
*Ta có: A\(=2^1+2^2+2^3+2^4+...+2^{2010}\)
\(=\left(2+2^2\right)+2^2\times\left(2+2^2\right)+...+2^{2008}\times\left(2+2^2\right)\)
\(=\left(2+2^2\right)\times\left(1+2^2+2^3+...+2^{2008}\right)\)
\(=6\times\left(2^2+2^3+...+2^{2008}\right)\)
\(=3\times2\times\left(2^2+2^3+...+2^{2008}\right)\)
\(\Rightarrow A⋮3\)
*Ta có: A \(=2^1+2^2+2^3+2^4+...+2^{2010}\)
\(=2\times\left(1+2+2^2\right)+2^4\times\left(1+2+2^2\right)+...+2^{2008}\times\left(1+2+2^2\right)\)
\(=\left(1+2+2^2\right)\times\left(2+2^4+2^7+...+2^{2008}\right)\)
\(=7\times\left(2+2^4+2^7+...+2^{2008}\right)\)
\(\Rightarrow A⋮7\)
Mình sửa lại đề C 1 chút xíu
*Ta có: C \(=3^1+3^2+3^3+3^4+...+3^{2010}\)
\(=\left(3+3^2\right)+3^2\times\left(3+3^2\right)+...+3^{2008}\times\left(3+3^2\right)\)
\(=\left(3+3^2\right)\times\left(1+3^2+3^3+...+3^{2008}\right)\)
\(=12\times\left(1+3^2+3^3+...+3^{2008}\right)\)
\(=4\times3\times\left(1+3^2+3^3+...+3^{2008}\right)\)
\(\Rightarrow C⋮4\)
Các câu khác làm tương tự nhé. Chúc bạn học tốt!
Ta có A=\(1+2+2^2+...+2^{200}\) =\(\left(1+2+2^2\right)+\left(2^3+2^{\text{4}}+2^5\right)+...+\left(2^{198}+2^{199}+2^{200}\right)\) =\(7+2^3.7+...+2^{200}.7\) =\(7\left(1+2^3+...+2^{200}\right)\) \(⋮7\) Vậy A\(⋮7\) CHÚC BẠN HOK TỐT (cho mik 1 k)
a = 1 + 2 x ( 1 + 2 + 2 mũ 2) + ......+ 2 mũ 98 x ( 1 + 2 + 2 mũ 2 )
a = 1 + 2 x 7 +.....+ mũ 98 x 7
a = 1 + 7 x ( 2 + 2 mũ 4 + .....+ 2 mũ 98)
do 1 chia 7 dư 1 và 7 x ( 2 + 2 mũ 4 + ....+ 2 mũ 98) chia hết 7
suy ra a chia 7 dư 1
a) \(A=2^1+2^2+2^3+2^4+...+2^{2010}\)
\(A=\left(2^1+2^2\right)+\left(2^3+2^4\right)+...+\left(2^{2009}+2^{2010}\right)\)
\(A=2\left(1+2\right)+2^3\left(1+2\right)+...+2^{2009}\left(1+2\right)\)
\(A=3\left(2+2^3+...+2^{2009}\right)⋮3\)
\(A=2^1+2^2+2^3+2^4+...+2^{2010}\)
\(A=\left(2^1+2^2+2^3\right)+\left(2^4+2^5+2^6\right)+...+\left(2^{2008}+2^{2009}+2^{2010}\right)\)
\(A=2\left(1+2+2^2\right)+2^4\left(1+2+2^2\right)+...+2^{2008}\left(1+2+2^2\right)\)
\(A=7\left(2^1+2^4+...+2^{2008}\right)⋮7\)
Các ý dưới bạn làm tương tự nhé.
\(B=2^1+2^2+2^3+2^4+...+2^{200}+2^{201}\)\(\Rightarrow B=2\left(1+2^1+2^2\right)+2^4\left(1+2^1+2^2\right)+...+2^{199}\left(1+2^1+2^2\right)\)
\(\Rightarrow B=2.7+2^4.7+...+2^{199}.7\)
\(\Rightarrow B=7.\left(2+2^4+...+2^{199}\right)⋮7\Rightarrow dpcm\)
2^200+2^199+2^198=2^198*(2^2+2+1)=7*2^198 chia hết cho 7
2200+2199+2198
= 2198.22 + 2198.21+2198.1
= 2198. ( 22+21+1 )
= 2198 .7
Vì 7 chia hết cho 7 nên dãy đó chia hết cho 7