Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)
\(\Delta'=\left(-2\right)^2-\left(4m-m^2\right)=4-4m+m^2=\left(m-2\right)^2\ge0\)
Vì \(\Delta'\ge0\) nên phương trình có nghiệm với mọi m
b) Theo Vi-ét có
\(\left\{{}\begin{matrix}x_1+x_2=4\\x_1x_2=4m-m^2\end{matrix}\right.\)
Lấy phương trình đầu của hệ, kết hợp với đề bài, có
\(\left\{{}\begin{matrix}x_1+x_2=4\\x_2=x_1^2-5x_1\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x_2=4-x_1\\x_2=x_1^2-5x_1\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x_2=4-x_1\\x_1^2-5x_1=4-x_1\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x_2=4-x_1\\x^2-4x_1+4=8\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x_2=4-x_1\\\left(x_1-2\right)^2=8\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x_2=4-x_1\\\left[{}\begin{matrix}x_1=2+2\sqrt{2}\\x_1=2-2\sqrt{2}\end{matrix}\right.\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x_1=2+2\sqrt{2}\\x_2=2+2\sqrt{2}\end{matrix}\right.\\\left\{{}\begin{matrix}x_1=2-2\sqrt{2}\\x_2=2-2\sqrt{2}\end{matrix}\right.\end{matrix}\right.\)
Ta có
\(x_1x_2=4m-m^2\)
Đã tìm được \(x_1\) và \(x_2\) , thay vào để tìm m
2. Áp dụng bất đẳng thức Cô - si cho 3 số dương \(\frac{a}{b},\frac{b}{c},\frac{c}{a}\)ta có
\(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\ge3\sqrt[3]{\frac{a}{b}.\frac{b}{c}.\frac{c}{a}}\)\(=3\)
Dấu "=" xảy ra <=> a = b = c
mik xl nha...để p.q.khó nhìn quá mik sửa lại nha...bn cứ tự thay p.q vô..
Sửa đề: Chứng minh rằng nếu 2 pt \(\hept{\begin{cases}x^2+ax+b=0\\x^2+cx+d=0\end{cases}}\)
Chứng minh:(b-d)2+(c-a).(da-bc)=0
Gọi v là nghiệm chung của 2 pt, ta có:
v2+av+b=0(1)
v2+ct+d=0(2)
Lấy (2)-(1), ta được:
(c-a)v +(d-b)=0
<=> v= \(\frac{b-d}{c-a}\)
Thay v =\(\frac{b-d}{c-a}\)vào (1), ta được:
(\(\frac{b-d}{c-a}\))2 +(\(\frac{b-d}{c-a}\))2 .a+b=0
<=> (b2-2bd+d2) +(a2d-adc+c2b-abc)=0
<=>(b-d)2 +(ad(a-c)+cd(c-a))=0
<=>(b-d)2 +(c-a).(cb-ad)=0
mik có lm sai bn thông cảm nha!!
123456.789-123456.7890000=0
Vì ở phần thập phân của 1 số thập phân nếu thêm 1 số 0 hay nhiều số 0 thì số thập phân đó vẫn ko thay đổi
TIck nhé