K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 9 2023

Tham khảo:

 

Kí hiệu O, E, F là các điểm như trên hình vẽ.

Dễ thấy: tứ giác OEMF là hình bình hành nên \(\overrightarrow {OE}  + \overrightarrow {OF}  = \overrightarrow {OM} \) hay \(\overrightarrow v  + \overrightarrow u  = \overrightarrow {OM} \)

Và \(\overrightarrow {OC}  = 3.\overrightarrow {OM}  \Rightarrow 3\left( {\overrightarrow v  + \overrightarrow u } \right) = 3.\overrightarrow {OM}  = \overrightarrow {OC} \)

Mặt khác: \(\overrightarrow {OA}  = 3.\overrightarrow {OF}  = 3\;\overrightarrow u ;\;\overrightarrow {OB}  = 3.\overrightarrow {OE}  = 3\;\overrightarrow v \)

Và \(\overrightarrow {OB}  + \overrightarrow {OA}  = \overrightarrow {OC} \) hay \(3\;\overrightarrow v  + 3\;\overrightarrow u  = \overrightarrow {OC} \)

\( \Rightarrow 3\left( {\overrightarrow v  + \overrightarrow u } \right) = 3\;\overrightarrow v  + 3\;\overrightarrow u \)

NV
22 tháng 11 2019

\(u.v=0\Leftrightarrow\left(2a+3b\right)\left(-15a+14b\right)=0\)

\(\Leftrightarrow-30a^2+42b^2-17ab=0\)

\(\Leftrightarrow ab=\frac{-30.4^2+42.3^2}{17}=-6\)

\(\Rightarrow cos\left(a;b\right)=\frac{ab}{\left|a\right|\left|b\right|}=-\frac{6}{12}=-\frac{1}{2}\Rightarrow\left(a;b\right)=120^0\)

17 tháng 5 2017

a) \(\overrightarrow{a}=2\overrightarrow{u}+3\overrightarrow{v}=2\left(3;-4\right)+3\left(2;5\right)=\left(6;-8\right)+\left(6;15\right)\)\(=\left(12;7\right)\).
b) \(\overrightarrow{b}=\overrightarrow{u}-\overrightarrow{v}=\left(3;-4\right)-\left(2;5\right)=\left(1;-9\right)\).
c) Hai véc tơ \(\overrightarrow{c}=\left(m;10\right)\)\(\overrightarrow{v}\) cùng phương khi và chỉ khi:
\(\dfrac{m}{2}=\dfrac{10}{5}=2\Rightarrow m=4\).

HQ
Hà Quang Minh
Giáo viên
24 tháng 9 2023

a) 

Ta có: \(\overrightarrow u .\;\overrightarrow v  = \left| {\overrightarrow u } \right|.\;\left| {\overrightarrow v } \right|.\cos \left( {\overrightarrow u ,\;\overrightarrow v } \right) = \left| {\overrightarrow u } \right|.\;\left| {\overrightarrow v } \right|\)

\( \Rightarrow \cos \left( {\overrightarrow u ,\;\overrightarrow v } \right) = 1 \Leftrightarrow \left( {\overrightarrow u ,\;\overrightarrow v } \right) = {0^o}\)

Nói cách khác: \(\overrightarrow u ,\;\overrightarrow v \) cùng hướng.

b)

Ta có: \(\overrightarrow u .\;\overrightarrow v  = \left| {\overrightarrow u } \right|.\;\left| {\overrightarrow v } \right|.\cos \left( {\overrightarrow u ,\;\overrightarrow v } \right) =- \left| {\overrightarrow u } \right|.\;\left| {\overrightarrow v } \right|\)

\( \Rightarrow \cos \left( {\overrightarrow u ,\;\overrightarrow v } \right) =  - 1 \Leftrightarrow \left( {\overrightarrow u ,\;\overrightarrow v } \right) = {180^o}\)

Nói cách khác: \(\overrightarrow u ,\;\overrightarrow v \) ngược hướng.

HQ
Hà Quang Minh
Giáo viên
24 tháng 9 2023

 Ta có: \(\overrightarrow u  = \left( {0; - 5} \right),\;\overrightarrow v  = \left( {\sqrt 3 ;1} \right)\)

\( \Rightarrow \overrightarrow u .\;\,\overrightarrow v  = 0.\sqrt 3  + \left( { - 5} \right).1 =  - 5.\)

HQ
Hà Quang Minh
Giáo viên
28 tháng 9 2023

a) Để \(\overrightarrow u  = \overrightarrow v  \Leftrightarrow \left\{ \begin{array}{l}2a - 1 = 3\\ - 3 = 4b + 1\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}a = 2\\b =  - 1\end{array} \right.\)

Vậy \(\left\{ \begin{array}{l}a = 2\\b =  - 1\end{array} \right.\) thì \(\overrightarrow u  = \overrightarrow v \)

b) \(\overrightarrow x  = \overrightarrow y  \Leftrightarrow \left\{ \begin{array}{l}a + b = 2a - 3\\ - 2a + 3b = 4b\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}a = 1\\b =  - 2\end{array} \right.\)

Vậy \(\left\{ \begin{array}{l}a = 1\\b =  - 2\end{array} \right.\) thì \(\overrightarrow x  = \overrightarrow y \)

HQ
Hà Quang Minh
Giáo viên
24 tháng 9 2023

a) Vì \(\overrightarrow u  = \overrightarrow 0 \) nên \(\overrightarrow u \) vuông góc với mọi \(\overrightarrow v \).

Như vậy \(\overrightarrow u .\overrightarrow v  = 0\)

Mặt khác: \(\overrightarrow u  = \overrightarrow 0  \Leftrightarrow x = y = 0\)

\( \Rightarrow k\left( {{x^2} + {y^2}} \right) = 0 = \overrightarrow u .\overrightarrow v \)

b) Vì \(\overrightarrow u  \ne \overrightarrow 0 \) và \(k \ge 0\) nên \(\overrightarrow u \) và \(\overrightarrow v \)cùng hướng.

\( \Rightarrow \;\left( {\overrightarrow u ,\;\overrightarrow v } \right) = {0^o} \Leftrightarrow \cos \;\left( {\overrightarrow u ,\;\overrightarrow v } \right) = 1\)

\(\begin{array}{l} \Rightarrow \overrightarrow u .\;\overrightarrow v  = \left| {\overrightarrow u } \right|.\;\left| {\overrightarrow v } \right| = \sqrt {{x^2} + {y^2}} .\sqrt {{{\left( {kx} \right)}^2} + {{\left( {ky} \right)}^2}} \\ = \sqrt {{x^2} + {y^2}} .\left| k \right|.\sqrt {{x^2} + {y^2}}  = k\left( {{x^2} + {y^2}} \right)\end{array}\)

(|k|= k do k > 0)

c) Vì \(\overrightarrow u  \ne \overrightarrow 0 \) và \(k < 0\) nên \(\overrightarrow u \) và \(\overrightarrow v \)ngược hướng.

\( \Rightarrow \;\left( {\overrightarrow u ,\;\overrightarrow v } \right) = {180^o} \Leftrightarrow \cos \;\left( {\overrightarrow u ,\;\overrightarrow v } \right) =  - 1\)

\(\begin{array}{l} \Rightarrow \overrightarrow u .\;\overrightarrow v  =  - \left| {\overrightarrow u } \right|.\;\left| {\overrightarrow v } \right| =  - \sqrt {{x^2} + {y^2}} .\sqrt {{{\left( {kx} \right)}^2} + {{\left( {ky} \right)}^2}} \\ =  - \sqrt {{x^2} + {y^2}} .\left| k \right|.\sqrt {{x^2} + {y^2}}  = k\left( {{x^2} + {y^2}} \right).\end{array}\)

HQ
Hà Quang Minh
Giáo viên
28 tháng 9 2023

a) Tọa độ của vectơ \(\overrightarrow u  + \overrightarrow v  + \overrightarrow w \) là: \(\overrightarrow u  + \overrightarrow v  + \overrightarrow w  = \left( { - 2 + 0 + \left( { - 2} \right);0 + 6 + 3} \right) = \left( { - 4;9} \right)\)

b) Ta có: \(\overrightarrow w  + \overrightarrow u  = \overrightarrow v  \Leftrightarrow \overrightarrow w  = \overrightarrow v  - \overrightarrow u \) nên \(\overrightarrow w  = \left( {0 - \sqrt 3 ; - \sqrt 7  - 0} \right) = \left( { - \sqrt 3 ; - \sqrt 7 } \right)\)