Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1.
\(f'\left(x\right)=\left(x^2-1\right)\left(x-2\right)^2\left(x-3\right)\) có các nghiệm bội lẻ \(x=\left\{-1;1;3\right\}\)
Sử dụng đan dấu ta được hàm đồng biến trên các khoảng: \(\left(-1;1\right);\left(3;+\infty\right)\)
Hàm nghịch biến trên các khoảng \(\left(-\infty;-1\right);\left(1;3\right)\)
2.
\(y'=4x^3-4x=0\Rightarrow\left[{}\begin{matrix}x=-1\\x=0\\x=1\end{matrix}\right.\)
Lập bảng xét dấu y' ta được hàm đồng biến trên \(\left(-1;0\right);\left(1;+\infty\right)\)
Hàm nghịch biến trên \(\left(-\infty;-1\right);\left(0;1\right)\)
Lời giải:
TXĐ: $[0;2]$. Hàm nghịch biến khi \(y'=\frac{1-x}{\sqrt{2x-x^2}}<0\Leftrightarrow \left\{\begin{matrix} 1-x< 0\\ 2x-x^2>0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x>1\\ 0< x< 2\end{matrix}\right.\)
$\Leftrightarrow 1< x< 2$
Đáp án C.
Dựa vào đồ thị hàm số ta thấy: f’(x) = 0 khi và chỉ khi x= 1;
Ta có bảng biến thiên :
Dựa vào bảng biến thiên ta thấy f(x) < 0 với mọi x≠ ± 2
Xét hàm số y= ( f( x) ) 2 có đạo hàm y’ = 2f(x). f’ (x)
Bảng xét dấu:
Chọn D.
Đáp án D