Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left\{{}\begin{matrix}-\frac{b}{2a}=\frac{3}{2}\\\frac{4ac-b^2}{4a}=\frac{1}{4}\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}b=-3a\\4ac-b^2=a\end{matrix}\right.\) \(\Rightarrow4ac-9a^2=a\Rightarrow c=\frac{9a+1}{4}\)
Mặt khác theo định lý Viet: \(\left\{{}\begin{matrix}x_1+x_2=-\frac{b}{a}=3\\x_1x_2=\frac{c}{a}=\frac{9a+1}{4a}\end{matrix}\right.\)
\(x_1^3+x_2^3=9\)
\(\Leftrightarrow\left(x_1+x_2\right)^3-3x_1x_2\left(x_1+x_2\right)=9\)
\(\Leftrightarrow27-9\left(\frac{9a+1}{4a}\right)=9\)
\(\Leftrightarrow12a-9a-1=4a\Rightarrow a=-1\)
\(\Rightarrow b=3\) ; \(c=-2\)
\(P=6\)
a.
\(\left\{{}\begin{matrix}-\dfrac{b}{2a}=-2\\4a-2b+c=4\\c=6\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}b=4a\\4a-2.4a+6=4\\c=6\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}b=4a=2\\a=\dfrac{1}{2}\\c=6\end{matrix}\right.\) \(\Rightarrow y=\dfrac{1}{2}x^2+2x+6\)
b.
\(y_{min}=y_{CT}=\dfrac{4ac-b^2}{4a}=\dfrac{4.1.1-\left(-4\right)^2}{4.1}=-3\)
y = ax2 + bx + c đạt Max bằng 5 tại x = -2
--> a < 0; \(\dfrac{4ac - b^2}{4a}\) = 5;
\(\dfrac{-b}{2a}\) = -2
--> b = 4a; \(\dfrac{4ac - 16a^2}{4a}\) = 5
--> b = c - 5 = 4a
Đồ thị hàm số đi qua M(1; -1)
--> a + b + c = -1
--> a + 4a + 4a + 5 = -1
<=> 9a = -6
<=> a = \(\dfrac{-2}{3}\) --> b = \(\dfrac{-8}{3}\); c = \(\dfrac{7}{3}\)
--> \(y = \dfrac{-2}{3}x^2\ -\)\(\dfrac{8}{3}x\) + \(\dfrac{7}{3}\)
\(\left\{{}\begin{matrix}-\frac{b}{2a}=\frac{3}{2}\\\frac{4ac-b^2}{4a}=\frac{1}{4}\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}b=-3a\\4ac-b^2=a\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}b=-3a\\4ac-9a^2=a\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}b=-3a\\4c-9a=1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}b=-3a\\c=\frac{9a+1}{4}\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x_1+x_2=-\frac{b}{a}=3\\x_1x_2=\frac{c}{a}=\frac{9a+1}{4a}\end{matrix}\right.\)
Ta có \(x_1^3+x_2^3=9\)
\(\Leftrightarrow\left(x_1+x_2\right)^3-3x_1x_2\left(x_1+x_2\right)=9\)
\(\Leftrightarrow27-9\left(\frac{9a+1}{4a}\right)=9\)
\(\Rightarrow a=-1\Rightarrow\left\{{}\begin{matrix}b=3\\c=-2\end{matrix}\right.\) \(\Rightarrow P=6\)