K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 5 2017

Thời gian của vòi lớn là 

        \(1\div20=\frac{1}{20}\) giờ 

Thời gian của vòi nhỏ là 

       \(1\div9=\frac{1}{9}\) giờ

Thời gian chảy của cả hai vòi là 

        \(\frac{1}{9}+\frac{1}{20}=\frac{29}{180}\) giờ

Nếy chảy riêng thì hết số thời gian là 

        \(1\div\frac{29}{180}=\frac{180}{29}\) giờ 

Đổi \(\frac{180}{90}\) giờ \(=\) 2 giờ

                            Đáp số 2 giờ 

Chúc bạn học giỏi

31 tháng 5 2017

Mình nhầm nhé

Kết quả cuối cùng bằng \(\frac{180}{29}\) 

Chúc bạn học giỏi

1 tháng 2 2020

Gọi thời gian chảy của vòi thứ nhất để bể đầy là a giờ (a > 0)

\(\Rightarrow\)Thời gian chảy của vòi thứ 2 để bể đầy là a + 2 giờ 

Đổi : 2 giờ 24 phút : = \(\frac{12}{5}\) giờ

\(\Rightarrow\)Nếu cả 2 vòi cùng chảy thì sau một giờ nước trong bể sẽ bằng : \(\frac{1}{\frac{12}{5}}=\frac{5}{12}\)(bể)

Ta có phương trình : 

\(\frac{1}{a}+\frac{1}{a+2}=\frac{5}{12}\)

\(\Leftrightarrow\frac{12\left(a+2\right)+12a}{12a\left(a+2\right)}=\frac{5a\left(a+2\right)}{12a\left(a+2\right)}\)

\(\Leftrightarrow12a+24+12a=5a^2+10a\)

\(\Leftrightarrow-5a^2+14a+24=0\)

\(\Leftrightarrow-5a^2-6a+20a+24=0\)

\(\Leftrightarrow-a\left(5a+6\right)+4\left(5a+6\right)=0\)

\(\Leftrightarrow\left(5a+6\right)\left(4-a\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}5a+6=0\\4-a=0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}a=-\frac{6}{5}\left(ktm\right)\\a=4\left(tm\right)\end{cases}}\)

Vậy thời gian vòi thứ nhất chảy 1 mình để đầy bể là 4 giờ

       thời gian vòi thứ 2 chảy 1 mình để đầy bể là 4 + 2 = 6 giờ.

1 tháng 2 2021

Gọi thời gian vòi 1 chảy một mình đẩy bể là x ( x<4)

Gọi thời gian vòi 2 chảy một mình đầy bể là y (y<4)

Trong một giờ:

-Vòi 1 chảy một mình được \(\dfrac{1}{x}\)(bể)

-Vòi 2 chảy được \(\dfrac{1}{y}\)(bể)

-Cả hai vòi chảy được \(\dfrac{1}{4}\)(bể)

+Ta có PT: \(\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{9}\)  (1)

Vì nếu để vòi 1 chảy một mình trong 30 phút rồi khóa lại và mở vòi hai trong 20 phút thì cả hai vòi chảy được 1/9 bể nên có PT:

\(\dfrac{1}{2}x+\dfrac{1}{3}y=\dfrac{1}{9}\)

\(\dfrac{x}{2}+\dfrac{y}{3}=\dfrac{1}{9}\) (2)

Từ (1) và (2) ta có HPT: \(\left\{{}\begin{matrix}\dfrac{x}{1}+\dfrac{y}{1}=\dfrac{1}{4}\\\dfrac{x}{2}+\dfrac{y}{3}=\dfrac{1}{9}\end{matrix}\right.\)

\(\left\{{}\begin{matrix}x=6\\y=12\end{matrix}\right.\)(TM)

Vậy vòi 1 chảy một mình trong 6 giờ thì đẩy bể

Vậy vòi 2 chảy một mình trong 12 giờ thì đẩy bể

 

1 tháng 2 2021

Cần giải HPT thì bảo mình @@

Gọi x(giờ) là thời gian vòi 1 chảy một mình đầy bể

y(giờ) là thời gian vòi 2 chảy một mình đầy bể

(Điều kiện: x>3; y>3)

Trong 1 giờ, vòi 1 chảy được: \(\dfrac{1}{x}\)(bể)

Trong 1 giờ, vòi 2 chảy được: \(\dfrac{1}{y}\)(bể)

Trong 1 giờ, hai vòi chảy được: \(\dfrac{1}{3}\)(bể)

Do đó, ta có phương trình: \(\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{3}\)(1)

Vì khi mở vòi 1 trong 20' và mở vòi 2 trong 30' thì cả hai vòi chảy được 1/8 bể nên ta có phương trình:

\(\dfrac{1}{3x}+\dfrac{1}{2y}=\dfrac{1}{8}\)(2)

Từ (1) và (2) ta lập được hệ phương trình:

\(\left\{{}\begin{matrix}\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{3}\\\dfrac{1}{3}\cdot\dfrac{1}{x}+\dfrac{1}{2}\cdot\dfrac{1}{y}=\dfrac{1}{8}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{3}\cdot\dfrac{1}{x}+\dfrac{1}{3}\cdot\dfrac{1}{y}=\dfrac{1}{9}\\\dfrac{1}{3}\cdot\dfrac{1}{x}+\dfrac{1}{2}\cdot\dfrac{1}{y}=\dfrac{1}{8}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{-1}{6}\cdot\dfrac{1}{y}=\dfrac{-1}{72}\\\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{3}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{y}=\dfrac{1}{12}\\\dfrac{1}{x}+\dfrac{1}{12}=\dfrac{1}{3}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{x}=\dfrac{1}{3}-\dfrac{1}{12}=\dfrac{1}{4}\\\dfrac{1}{y}=\dfrac{1}{12}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=4\\y=12\end{matrix}\right.\)(thỏa ĐK)

Vậy: Vòi 1 cần 4 giờ để chảy một mình đầy bể

Vòi 2 cần 12 giờ để chảy một mình đầy bể

26 tháng 1 2022

ai giúp mình với đc không(30p)

 

AH
Akai Haruma
Giáo viên
26 tháng 1 2022

Lời giải:

Đổi 20 phút = $\frac{1}{3}$ giờ; 30 phút = $\frac{1}{2}$ giờ 

Giả sử vòi 1 và vòi 2 chảy 1 mình thì sau tương ứng $a,b$ giờ thì đầy bể

Khi đó, trong 1 giờ thì:

Vòi 1 chảy $\frac{1}{a}$ bể; vòi 2 chảy $\frac{1}{b}$ bể 

Theo bài ra ta có: \(\left\{\begin{matrix} \frac{3}{a}+\frac{3}{b}=1\\ \frac{1}{3a}+\frac{1}{2b}=\frac{1}{8}\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} \frac{1}{a}=\frac{1}{4}\\ \frac{1}{b}=\frac{1}{12}\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} a=4\\ b=12\end{matrix}\right.\)

Vậy......

 

20 tháng 9 2018

Gọi x (phút), y (phút) lần lượt là thời gian vòi thứ nhất, vòi thứ hai chảy một mình để đầy bể.

(Điều kiện: x, y > 80 )

Trong 1 phút vòi thứ nhất chảy được Giải bài 38 trang 24 SGK Toán 9 Tập 2 | Giải toán lớp 9 bể; vòi thứ hai chảy được Giải bài 38 trang 24 SGK Toán 9 Tập 2 | Giải toán lớp 9 bể.

Sau 1 giờ 20 phút = 80 phút, cả hai vòi cùng chảy thì đầy bể nên ta có phương trình:

Giải bài 38 trang 24 SGK Toán 9 Tập 2 | Giải toán lớp 9

Mở vòi thứ nhất trong 10 phút và vòi thứ 2 trong 12 phút thì chỉ được 2/15 bể nước nên ta có phương trình :

Giải bài 38 trang 24 SGK Toán 9 Tập 2 | Giải toán lớp 9

Ta có hệ phương trình:

Giải bài 38 trang 24 SGK Toán 9 Tập 2 | Giải toán lớp 9

Đặt Giải bài 38 trang 24 SGK Toán 9 Tập 2 | Giải toán lớp 9 . Khi đó hệ phương trình trở thành :

QUẢNG CÁO

Giải bài 38 trang 24 SGK Toán 9 Tập 2 | Giải toán lớp 9

Vậy nếu chảy một mình, để đầy bể vòi thứ nhất chảy trong 120 phút (= 2 giờ) , vòi thứ hai 240 phút (= 4 giờ)

13 tháng 9 2018

Gọi x (phút), y (phút) lần lượt là thời gian vòi thứ nhất, vòi thứ hai chảy một mình để đầy bể.

(Điều kiện: x, y > 80 )

Trong 1 phút vòi thứ nhất chảy được 1/x bể; vòi thứ hai chảy được 1/y bể.

Sau 1 giờ 20 phút = 80 phút, cả hai vòi cùng chảy thì đầy bể nên ta có phương trình:

Giải bài 38 trang 24 SGK Toán 9 Tập 2 | Giải toán lớp 9

Mở vòi thứ nhất trong 10 phút và vòi thứ 2 trong 12 phút thì chỉ được 2/15 bể nước nên ta có phương trình :

Giải bài 38 trang 24 SGK Toán 9 Tập 2 | Giải toán lớp 9

Ta có hệ phương trình:

Giải bài 38 trang 24 SGK Toán 9 Tập 2 | Giải toán lớp 9

Đặt Giải bài 38 trang 24 SGK Toán 9 Tập 2 | Giải toán lớp 9 . Khi đó hệ phương trình trở thành :

Giải bài 38 trang 24 SGK Toán 9 Tập 2 | Giải toán lớp 9

Vậy nếu chảy một mình, để đầy bể vòi thứ nhất chảy trong 120 phút (= 2 giờ) , vòi thứ hai 240 phút (= 4 giờ)

Kiến thức áp dụng

Giải bài toán bằng cách lập hệ phương trình :

Bước 1 : Lập hệ phương trình

- Chọn các ẩn số và đặt điều kiện thích hợp

- Biểu diễn các đại lượng chưa biết và đã biết theo ẩn

- Lập các phương trình biểu thị mối quan hệ giữa các đại lượng theo đề bài.

- Từ các phương trình vừa lập rút ra được hệ phương trình.

Bước 2 : Giải hệ phương trình (thường sử dụng phương pháp thế hoặc cộng đại số).

Bước 3 : Đối chiếu nghiệm với điều kiện và kết luận.

Bài 9: 

Đổi \(4h48'=\dfrac{24}{5}h\)

Gọi x(giờ) và y(giờ) lần lượt là thời gian vòi I và vòi II chảy một mình đầy bể(Điều kiện: \(x>\dfrac{24}{5};y>\dfrac{24}{5}\))

Trong 1 giờ, vòi I chảy được:

\(\dfrac{1}{x}\)(bể)

Trong 1 giờ, vòi II chảy được: 

\(\dfrac{1}{y}\)(bể)

Trong 1 giờ, hai vòi chảy được:

\(1:\dfrac{24}{5}=\dfrac{5}{24}\)(bể)

Do đó, ta có phương trình: \(\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{5}{24}\)(1)

Vì khi vòi I chảy trong 4 giờ và vòi II chảy trong 3 giờ thì hai vòi chảy được \(\dfrac{3}{4}\) bể nên ta có phương trình:

\(\dfrac{4}{x}+\dfrac{3}{y}=\dfrac{3}{4}\)(2)

Từ (1) và (2) ta lập được hệ phương trình:

\(\left\{{}\begin{matrix}\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{5}{24}\\\dfrac{4}{x}+\dfrac{3}{y}=\dfrac{3}{4}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{4}{x}+\dfrac{4}{y}=\dfrac{5}{6}\\\dfrac{4}{x}+\dfrac{3}{y}=\dfrac{3}{4}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{y}=\dfrac{1}{12}\\\dfrac{1}{x}=\dfrac{5}{24}-\dfrac{1}{12}=\dfrac{1}{8}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=8\\y=12\end{matrix}\right.\)(thỏa ĐK)

Vậy: Vòi thứ 1 cần 8 giờ để chảy một mình đầy bể

Vòi thứ 2 cần 12 giờ để chảy một mình đầy bể

Bài 10:

Đổi \(7h12'=\dfrac{36}{5}h\)

Gọi x(giờ) và y(giờ) lần lượt là thời gian người thứ nhất và người thứ hai hoàn thành công việc khi làm một mình(Điều kiện: \(x>\dfrac{36}{5};y>\dfrac{36}{5}\))

Trong 1 giờ, người thứ nhất làm được: \(\dfrac{1}{x}\)(công việc)

Trong 1 giờ, người thứ hai làm được: \(\dfrac{1}{y}\)(công việc)

Trong 1 giờ, hai người làm được: \(1:\dfrac{36}{5}=\dfrac{5}{36}\)(công việc)

Do đó, ta có phương trình: \(\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{5}{36}\)(1)

Vì khi người thứ nhất làm trong 4 giờ và người thứ hai làm trong 3 giờ thì được 50% công việc nên ta có phương trình:

\(\dfrac{4}{x}+\dfrac{3}{y}=\dfrac{1}{2}\)(2)

Từ (1) và (2) ta lập được hệ phương trình:

\(\left\{{}\begin{matrix}\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{5}{36}\\\dfrac{4}{x}+\dfrac{3}{y}=\dfrac{1}{2}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{4}{x}+\dfrac{4}{y}=\dfrac{5}{9}\\\dfrac{4}{x}+\dfrac{3}{y}=\dfrac{1}{2}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{y}=\dfrac{1}{18}\\\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{5}{36}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=18\\\dfrac{1}{x}=\dfrac{5}{36}-\dfrac{1}{18}=\dfrac{1}{12}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=12\\y=18\end{matrix}\right.\)(thỏa ĐK)

Vậy: Người thứ nhất cần 12 giờ để hoàn thành công việc khi làm một mình

Người thứ hai cần 18 giờ để hoàn thành công việc khi làm một mình