Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đổi 3h20' = 10/3 h
Gọi thời gian vòi 1 chảy 1 mình đầy bể là : x ( h) ( điều kiện: x > 10/3)
Trong 1h, vòi 1 chảy riêng được: 1:x = 1/x ( bể)
Trong 3h, vòi 1 chảy riêng được: 3. 1/x = 3/x ( bể)
Trong 2h, vòi 2 chảy riêng được : 4/5 - 3/x = (4x-15)/(5x) ( bể)
Trong 1h , vòi 1 chảy riêng được : (4x-15)/(5x) : 2 = (4x-15)/(10x) ( bể)
Trong 1h, 2 vòi chảy được : 1 : 10/3 = 3/10 ( bể)
Theo bài ra ta có phương trình: (4x-15)/(10x) + 1/x = 3/10
<=> ... <=> x= 5 (tmđk)
Trong 1h, vòi 1 chảy riêng được : 1/5 ( bể)
vòi 2 chảy riêng để đầy bể là: 1:(3/10 - 1/5) = 10 ( bể)
Vậy ...
( Bài này có cách khác ngắn hơn nhưng lại là kiến thức lớp 9, bạn tham khảo cách này nhé!)
Gọi x(h) là thời gian vòi 1 chảy một mình đầy bể(Điều kiện: x>4)
Gọi y(h) là thời gian vòi 2 chảy một mình đầy bể(Điều kiện: y>4)
Trong 1 giờ, vòi 1 chảy được: \(\dfrac{1}{x}\)(bể)
Trong 1 giờ, vòi 2 chảy được: \(\dfrac{1}{y}\)(bể)
Trong 1 giờ, hai vòi chảy được: \(\dfrac{1}{4}\)(bể)
Do đó, ta có phương trình: \(\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{4}\)(1)
Vì nếu 2 vòi chảy chung trong 2 giờ rồi ngắt vòi 2, để vòi 1 chảy tiếp trong 3h nữa thì đầy bể nên ta có phương trình:
\(\dfrac{5}{x}+\dfrac{2}{y}=1\)(2)
Từ (1) và (2) ta lập được hệ phương trình:
\(\left\{{}\begin{matrix}\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{4}\\\dfrac{5}{x}+\dfrac{2}{y}=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{5}{x}+\dfrac{5}{y}=\dfrac{5}{4}\\\dfrac{5}{x}+\dfrac{2}{y}=1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{3}{y}=\dfrac{1}{4}\\\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{4}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=12\\\dfrac{1}{x}=\dfrac{1}{4}-\dfrac{1}{12}=\dfrac{1}{6}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=6\\y=12\end{matrix}\right.\)(thỏa ĐK)
Vậy: Vòi 1 cần 6 giờ để chảy một mình đầy bể
Vòi 2 cần 12 giờ để chảy một mình đầy bể