K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Ông A phải chọn vị trí: Giao điểm của ba đường trung trực của ba đoạn thẳng nối các cửa hàng A,B,C để tìm địa điểm O

7 tháng 5 2023

Do ba cửa hàng A,B,C không nằm trên một đường thẳng nên ba cửa hàng sẽ tạo nên 1 tam giác(gọi là tam giác ABC)

Ta có tính chất: Giao của 3 đường trung trực trong tam giác (trực tâm) cách đều 3 đỉnh của tam giác đó

\(\Rightarrow\) Điểm O chính là trực tâm của tam giác ABC 

 

18 tháng 12 2016

Giải:
Gọi số tấn hàng cho mỗi ô tô A, B, C là a, b, c

Ta có: \(2a=3b=5c\Rightarrow\frac{2a}{30}=\frac{3b}{30}=\frac{5c}{30}\Rightarrow\frac{a}{15}=\frac{b}{10}=\frac{c}{6}\) và a + b + c = 31

Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{a}{15}=\frac{b}{10}=\frac{c}{6}=\frac{a+b+c}{15+10+6}=\frac{31}{31}=1\)

+) \(\frac{a}{15}=1\Rightarrow a=15\)

+) \(\frac{b}{10}=1\Rightarrow b=10\)

+) \(\frac{c}{6}=1\Rightarrow c=6\)

Vậy ô tô A chở 15 tấn hàng

ô tô B chở 10 tấn hàng

ô tô C chở 6 tấn hàng

18 tháng 12 2016

Gọi số tấn hàng của ba ô tô A,B,C cần chuyển lần lượt là a,b,c ( a,b,c \(\in\) N* )
Vì số tần cần chuyển của 3 ô tô tỉ lệ nghịch với khoảng cách cần chuyển nên : 2a = 3b = 5z => \(\frac{2a}{30}\) = \(\frac{3b}{30}\)= \(\frac{5b}{30}\) => \(\frac{a}{15}\) = \(\frac{b}{10}\)=\(\frac{c}{6}\) và a+b+c=31 (tấn )
Áp dụng t/c của dãy tỉ số bằng nhau ta có :
\(\frac{a}{15}\) = \(\frac{b}{10}\)=\(\frac{c}{6}\) = \(\frac{a+b+c}{15+10+6}\)=\(\frac{31}{31}\)= 1
Suy ra : \(\frac{a}{15}\)=1 => a= 15
\(\frac{b}{10}\)=1 => b=10
\(\frac{c}{6}\)=1 => c=6
Vậy số tấn hàng hóa của 3 đội A,B,C lần lượt là 15,10,6 tấn

 
HQ
Hà Quang Minh
Giáo viên
17 tháng 9 2023

a)

Giá bán trà sữa mà bạn Quân dự định mua đã giảm 10%, số tiền mà bạn Quân được giảm là: \(\dfrac{{x.10}}{{100}} = \dfrac{x}{{10}}\)(đồng).

Biểu thức biểu thị:

-        Giá tiền của 1 cốc trà sữa sau khi giảm giá là \(x - \dfrac{x}{{10}} = \dfrac{{10x - x}}{{10}} = \dfrac{{9x}}{{10}} = \dfrac{9}{{10}}x\) (đồng).

-        Số tiền mua 5 cốc trà sữa sau khi giảm giá là \(5.\dfrac{9}{{10}}x = \dfrac{9}{2}x\) (đồng).

-        Số tiền mua 3 lọ sữa chua là \(3y\).

b)

Biểu thức biểu thị số tiền vừa đủ để mua lượng trà sữa và sữa chua như dự định (khi chưa giảm giá) là:

\(5x + 3y = 195000 = 5x + 3.15000 = 195000\).

                                               \(\Rightarrow 5x + 45000 = 195000\).

                                               \(\Rightarrow 5x = 150000\).

                                               \(\Rightarrow x = 30000\).

Vậy giá tiền của một cốc trà sữa khi chưa giảm giá là 30000 đồng.

Giá tiền của một cốc trà sữa sau khi đã giảm giá là: \(\dfrac{9}{{10}}.30000 = 27000\) (đồng).

Gọi số tấn hàng cho 3 ô tô lần lượt là a,b,c

Theo đề, ta có: 2a=3b=5c

=>a/15=b/10=c/6

Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{a}{15}=\dfrac{b}{10}=\dfrac{c}{6}=\dfrac{a+b+c}{15+10+6}=\dfrac{31}{31}=1\)

Do đó: a=15; b=10; c=6