Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(a=6k+2;b=6m+3\)
Ta có:
\(ab=\left(6k+2\right)\left(6m+3\right)=36km+18k+12m+6⋮6\left(đpcm\right)\)
Bài 2:
a: Ta có: \(n\left(n+5\right)-\left(n-3\right)\left(n+2\right)\)
\(=n^2+5n-n^2-2n+3n+6\)
\(=6n+6⋮6\)
b: Ta có: \(\left(n-1\right)\left(n+1\right)-\left(n-7\right)\left(n-5\right)\)
\(=n^2-1-n^2+12n-35\)
\(=12n-36⋮12\)
Ta có a = 3. q + 1 (q là số tự nhiên)
b = 3 . p + 2 (p là số tự nhiên)
a.b = (3q + 1)(3p + 2)
= 9qp + 6q + 3p + 2
Tổng trên có 9qp, 6q, 3p đều chia hết cho 3 do đó Tổng chia cho 3 dư 2, nghĩa là ab chia cho 3 dư 2.
Câu hỏi của Dung Tr - Toán lớp 6 - Học toán với OnlineMath
a. S = 5 + 52 + 53 + 54 + 55 + 56 +...+ 52012.
S = (5 + 52 + 53 + 54) + 55(5 + 52 + 53 + 54)+....+ 52009(5 + 52 + 53 + 54)
Vì (5 + 52 + 53 + 54) = 780 chia hết cho 65
Vậy S chia hết cho 65
b. Gọi số cần tìm là a ta có: (a - 6) chia hết cho 11; (a - 1) chia hết cho 4; (a - 11) chia hết cho 19.
(a - 6 + 33) chia hết cho 11; (a - 1 + 28) chia hết cho 4; (a - 11 + 38) chia hết cho 19.
(a + 27) chia hết cho 11; (a + 27) chia hết cho 4; (a + 27) chia hết cho 19.
Do a là số tự nhiên nhỏ nhất nên a + 27 nhỏ nhất
Suy ra: a + 27 = BCNN (4;11; 19).
Từ đó tìm được: a = 809
A = 10n + 18n - 1 = 10n - 1 - 9n + 27n
Ta biết số n và số có tổng các chữ số bằng n có cùng số dư khi chia cho 9 do đó nên
* Vậy A chia hết cho 27
1:
a chia 5 dư 3 nên a=5k+3
b chia 5 dư 2 nên b=5c+2
a*b=(5k+3)(5c+2)
=25kc+10k+15c+6
=5(5kc+2k+3c+1)+1 chia 5 dư 1
2:
Gọi ba số liên tiếp là a;a+1;a+2
Theo đề, ta có:
(a+1)(a+2)-a(a+1)=50
=>a^2+3a+2-a^2-a=50
=>2a+2=50
=>2a=48
=>a=24
=>Ba số cần tìm là 24;25;26
Bài 1:
Vì a chia cho 3 dư 1 \(\Rightarrow a\equiv1\left(mod3\right)\)
b chia cho 3 dư 2 \(\Rightarrow b\equiv2\left(mod3\right)\)
\(\Rightarrow ab\equiv2\left(mod3\right)\)
Vậy ab chia cho 3 dư 2
Cách 2: ( hướng dẫn)
a chia 3 dư 1 nên a=3k+1(k thuộc N ) b chia 3 dư 2 nên b=3k+2 ( k thuộc N )
Từ đó nhân ra ab=(3k+1)(3k+2) rồi chứng minh
Bài 2:
Ta có: \(n\left(2n-3\right)-2n\left(n+1\right)\)
\(=2n^2-3n-2n^2-2n\)
\(=-5n\)
Vì \(n\)nguyên \(\Rightarrow-5n⋮5\)
\(\Rightarrow n\left(2n-3\right)-2n\left(n+1\right)⋮5\forall n\in Z\left(đpcm\right)\)
nếu a và b đều là 2 số tự nhiên có 1 chữ số thì
a là 7/6 dư 1
b là 8 chia 6 dư 2
a chia 6 dư 1=> a=6n+1
b chia 6 dư 2=>b=6n+2
Do đó ab=(6n+1)(6n+2)=36n2+18n+2
=> ab chia 6 dư 2
Bài này giải bằng quy nạp
Mình ko có thời gian nên nói cách làm thôi
Bạn ơi mình nhầm rồi. Đáp an dưới là sai nha bạn. Bài này làm theo như sau nha :
Gọi x,y (\(x;y\in N\)) lần lượt là phép tính của \(\frac{a}{6}và\frac{b}{6}\) khi này ta có:
\(a\cdot b=\left(6x+2\right)\cdot\left(6y+3\right)\)
\(\Leftrightarrow a\cdot b=36xy+18x+12y+6\)
\(\Leftrightarrow a\cdot b=6\left(6xy+3x+2y+1\right)\)
\(\Rightarrow a.b⋮6\)
Vậy tích a và b luôn chia hết cho 6.
Ta có:
\(\frac{a}{6}.\frac{b}{6}=6\Leftrightarrow\frac{a.b}{36}=6\Leftrightarrow a\cdot b=216\)
Vậy tích a và b là 216 nên chia hết hết cho 6 ( đpcm ).