Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì ƯCLN(a;2^3*3^2*5)=3^2*5
nên a=3^2*3^k*5*5^b
Vì BCNN(a;2^3*3^2*5)=2^3*3^4*5^3
nên \(BCNN\left(3^{k+2};5^{b+1};2^3\cdot3^2\cdot5\right)=2^3\cdot3^4\cdot5^3\)
=>k+2=4;b+1=3
=>k=2; b=2
=>Số còn lại là \(a=3^4\cdot5^3\)
a)BCNN là: 600:10=60
Vì tích của BCNN va UCLN = tích của 2 số nên tích 2 số là: 60*600=36000
Số thứ 2 là: 36000:12=300
b)BCNN là: 12*6=72 Vì tích của BCNN va UCLN = tích của 2 số nên tích 2 số là: 12*72=864
Số thứ 2 là : 864:24=36
Bài 1: Vì mỗi số nguyên tố chỉ có ước là 1 và chính nó mà 79 và 97 là hai số nguyên tố khác nhau nên ƯCLN(79, 97) = 1 và BCNN (79, 97) = 79.97 = 7 663.
Bài 2:
ƯCLN (3a.52; 33.5b). BCNN = (3a.52; 33.5b) = ( 33.53).(34.53)
= (33.34).(52.53) = 33+4.52+3 = 37.55
Tích của 2 số đã cho:(3a.52).(33.5b) = ( 3a.33).(52.5b) = 3a+3.5b+2
Ta có tích của hai số bằng tích của ƯCLN và BCNN của hai số ấy nên:
37.55= 3a+3.5b+2. Do đó: a + 3 = 7 ⇒ a = 7 – 3 = 4
và b + 2 = 5 ⇒ b = 5 -2
Vậy a = 4 và b = 3.
bài 1:
Gọi 2 số đó là a và 270 với a < 270
Ta có ƯCLN(a ; 270) = 45
=> a = 45m ; 270 = 45 . 6 (m ∈ N)
Mà ƯCLN(a ; 270) = 45 => ƯCLN(m ; 6) = 1
Do a < 270 nên m < 6.
Vậy m ∈ {1 ; 5}
Khi đó a ∈ {45 ; 225}
Vậy số bé là 45 hoặc 225
Bài 2:
Tìm 2 số có tổng là 162 và UCLN là 18.
x+y=162
x=18m; y=18n => m+n=9 và m, n nguyên tố cùng nhau => xảy ra 3 trường hợp
1. m=4; n=5 hoặc ngược lại
=> x=18*4=72 và y=18*5=90 hoặc ngược lại
2. m=1 và n=8 hoặc ngược lại
=> x=18 và y=144 hoặc ngược lại
3. m=2 và n=7 hoặc ngược lại
=> x=36 và y=126 hoặc ngược lại
Bài 3:
Vì BCNN(A,B)=300;ƯCLN(A,B)=15=> AB= 4500
ta có: ƯCLN(A,B)= 15=> A=15k;b=15q với ƯCLN(k;q)=1
=> 15k x 15q = 4500
=> 225kq=4500
=> kq= 20
Mà ƯCLN(k;q)=1 => ta có bảng:
k | 1 | 4 | 5 | 20 |
---|---|---|---|---|
A | 15 | 60 | 75 | 300 |
q | 20 | 5 | 4 | 1 |
B | 300 | 75 | 60 | 15 |
Mà theo đề bài: A+15=B=> A=60; B=75
Câu 6:
Gọi A là tập các số là bội của 3 trong khoảng từ 23 đến 82
=>A={24;27;30;...;81}
Số số hạng là (81-24):3+1=20(số)
Câu 8:
Gọi số học sinh là x
Theo đề, ta có: \(x\in BC\left(35;40\right)\)
mà 800<=x<=900
nên x=840
Gọi số cần tìm là \(x.\)
Tích của hai số đã cho là \(x.2^2.3.5\)
Tích của BCNN và ƯCLN của hai số đã cho là:
\(2^3.3.5^3.2^2.5=2^5.3.5^4\)
Áp dụng kết luận ở bài tập 2.45, ta có tích của BCNN và ƯCLN của hai số tự nhiên bất kì thì bằng tích của hai số đó.
Do đó: \(x.2^2.3.5\)=\(2^5.3.5^4\)
\(x=\frac{2^5.3.5^4}{2^2.3.5}\)
\(x= 2^3.5^3\)
Vậy \(x= 2^3.5^3\)
Là la lá