K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 8 2019

Đáp án D

7 tháng 10 2018

bài này mấy đứa ôn lí 11 cug đc hokn mà

7 tháng 10 2018

\(\dfrac{W_a}{W_b}=\dfrac{\dfrac{1}{2}m.v_1max^2}{\dfrac{1}{2}m.v_2max^2}=\dfrac{g.l_1.\alpha o1^2}{g.l_2.\alpha o^2}\)

dao động nhỏ nên anpha xấp xỉ sin anpha
B là 2
A là 1

tỉ số cơ năng là....

1 tháng 6 2016
Đáp án đúng: A
 

Chọn gốc thế năng tại VT dây thẳng đứng.
Áp dụng định luật bảo toàn năng lượng ta có:
\(W=mgl\left(1-\cos\alpha_0\right)=W_d+W_t=W_d+mgl\left(1-\cos\alpha\right)\)
\(\Rightarrow W_d=mgl\left(1-\cos\alpha_0-1+\cos\alpha\right)=mgl\left(\frac{\alpha^2_0}{2}-\frac{\alpha^2}{2}\right)\)
\(=0,1.10.0,8.\left(\frac{\left(\frac{8}{180}\pi\right)^2-\left(\frac{4}{180}\pi\right)^2}{2}\right)\approx5,84\left(mJ\right)\)

4 tháng 8 2016

Khi vật qua VTCB thì động năng bằng cơ năng, nếu giữ dây treo tại 1 vị trí nào đó thì tốc độ của vật không đổi --> động năng không đổi

--> Cơ năng không thay đổi.

Chọn phương án B.

4 tháng 6 2016
Ta có:
 \(T=2\pi\sqrt{\frac{l}{g}}\)
\(T'=2\pi\sqrt{\frac{l'}{g}}\)
\(\Rightarrow\frac{T'}{T}=\sqrt{\frac{l'}{l}}=\sqrt{2}\Rightarrow T'=2\sqrt{2}s\)
Đáp án D
6 tháng 8 2016

Áp dụng công thức tính năng lượng dao động của con lắc đơn ta có:
\(W_1 = \dfrac{1}{2}.m_1.g.\ell_1. \alpha_1 ^{2}\)\(W_2 = \dfrac{1}{2}.m_2.g.\ell_2. \alpha_2 ^{2}\)
Theo giả thiết hai con lắc đơn có cùng năng lượng

\(\Rightarrow \dfrac{1}{2}.m_1.g.\ell_1. \alpha_1 ^{2}=\dfrac{1}{2}.m_2.g.\ell_2. \alpha_2 ^{2}\)
Do khối lượng hai con lắc bằng nhau nên:

\(\ell_1.\alpha_1 ^{2} = \ell_2. \alpha_2 ^{2}\)

\(\Rightarrow \alpha_2 = \alpha_1 .\sqrt{l1/l2}\).

Thay số ta tìm được: \(\alpha_2 = 5,625^0\)

7 tháng 8 2016

Thanks nhìu

[Chủ đề 1: Dao động cơ]Câu 1: Một con lắc lò xo gồm lò xo nhẹ có độ cứng \(k\) và vật nhỏ có khối lượng \(m\). Con lắc này dao động điều hòa với chu kì làA. \(T=2\pi\sqrt{\dfrac{m}{k}}\).B. \(T=2\pi\sqrt{\dfrac{k}{m}}\).C. \(T=\sqrt{\dfrac{m}{k}}\).D. \(T=\sqrt{\dfrac{k}{m}}\).Câu 2: Có câu chuyện về một giọng hát opera cao và khỏe có thể làm vỡ một cái cốc thủy tinh để gần. Đó là kết quả của...
Đọc tiếp

undefined

[Chủ đề 1: Dao động cơ]

Câu 1: Một con lắc lò xo gồm lò xo nhẹ có độ cứng \(k\) và vật nhỏ có khối lượng \(m\). Con lắc này dao động điều hòa với chu kì là

A. \(T=2\pi\sqrt{\dfrac{m}{k}}\).

B. \(T=2\pi\sqrt{\dfrac{k}{m}}\).

C. \(T=\sqrt{\dfrac{m}{k}}\).

D. \(T=\sqrt{\dfrac{k}{m}}\).

Câu 2: Có câu chuyện về một giọng hát opera cao và khỏe có thể làm vỡ một cái cốc thủy tinh để gần. Đó là kết quả của hiện tượng nào sau đây?

A. Cộng hưởng điện.

B. Dao động tắt dần.

C. Dao động duy trì.

D. Cộng hưởng cơ.

Câu 3: Hai dao động điều hòa cùng tần số và ngược pha nhau thì có độ lệch pha bằng

A. \(\left(2k+1\right)\pi\) với \(k=0,\pm1,\pm2,...\)

B. \(2k\pi\) với \(k=0,\pm1,\pm2,...\)

C. \(\left(k+0,5\right)\pi\) với \(k=0,\pm1,\pm2,...\)

D. \(\left(k+0,25\right)\pi\) với \(k=0,\pm1,\pm2,...\)

Câu 4: Một con lắc đơn dao động với phương trình \(s=3cos\left(\pi t+0,5\pi\right)\) (cm) (t tính bắng s). Tần số dao động của con lắc này là

A. 0,5 Hz.

B. \(4\pi\) Hz.

C. \(0,5\pi\) Hz.

C. 2 Hz.

Câu 5: Trong quá trình một vật dao động điều hòa, tập hợp ba đại lượng nào sau đây đều có giá trị không đổi?

A. Cơ năng, biên độ, tần số.

B. Tần số, gia tốc, lực kéo về.

C. Gia tốc, lực kéo về, cơ năng.

D. Biên độ, tần số, gia tốc.

Câu 6: Một vật dao động với phương trình \(x=6cos\left(4\pi t+\dfrac{\pi}{6}\right)\) (cm) (t tính bằng s). Khoảng thời gian ngắn nhất để vật đi từ vị trí có li độ 3 cm theo chiều dương đến vị trí có li độ \(-3\sqrt{3}\) cm là

A. \(\dfrac{7}{24}\) s.

B. \(\dfrac{1}{4}\) s.

C. \(\dfrac{5}{24}\) s.

D. \(\dfrac{1}{8}\) s.

Câu 7: Một vật dao động điều hòa với biên độ \(A\) và cơ năng \(W\). Khi vật đi qua vị trí có li độ \(\dfrac{2A}{3}\) thì động năng của vật là

A. \(\dfrac{2W}{9}\).

B. \(\dfrac{5W}{9}\).

C. \(\dfrac{4W}{9}\).

D. \(\dfrac{W}{3}\).

Câu 8. Một con lắc đơn có chiều dài \(l\). Kéo con lắc lệch khỏi vị trí cân bằng một góc \(\alpha_0=60^o\). Tỉ số giữa lực căng dây cực đại và cực tiểu là

A. 3.

B. 5.

C. 2.

D. 4.

Để ôn tập tốt hơn, các em hãy:

- Xem phần tổng hợp kiến thức chủ đề 1: https://hoc24.vn/ly-thuyet/chu-de-1-dao-dong-co.59158

- Xem video bài giảng ôn tập chủ đề 1: https://www.youtube.com/watch?v=XQvATZVJErY&t=5s

2
7 tháng 4 2021

Sau đây là keys

1/ \(A.T=2\pi\sqrt{\dfrac{m}{k}}\)

2/ \(D.\) Cộng hưởng cơ

3/ \(\varphi_1-\varphi_2=\pi+2k\pi=\left(2k+1\right)\pi\Rightarrow A.\left(2k+1\right)\pi\)

4/ \(\omega=2\pi f\Rightarrow f=\dfrac{\omega}{2\pi}=\dfrac{\pi}{2\pi}=\dfrac{1}{2}\left(Hz\right)\Rightarrow A.0,5Hz\)

5/ \(A.\) Cơ năng, biên độ, tần số 

6/ Câu này vẽ đường tròn ra là xong thôi

\(\varphi=arc\cos\left(\dfrac{3}{6}\right)+\dfrac{\pi}{2}+arc\sin\left(\dfrac{3\sqrt{3}}{6}\right)=\dfrac{\pi}{3}+\dfrac{\pi}{2}+\dfrac{\pi}{3}=\dfrac{7\pi}{6}\left(rad\right)\)

\(\Rightarrow t=\dfrac{\varphi}{\omega}=\dfrac{7\pi}{6.4\pi}=\dfrac{7}{24}\left(s\right)\Rightarrow A.\dfrac{7}{24}\left(s\right)\)

7/ \(W_t=\dfrac{1}{2}kx^2=\dfrac{1}{2}k\dfrac{4}{9}A^2\Rightarrow\dfrac{W_t}{W}=\dfrac{\dfrac{2}{9}kA^2}{\dfrac{1}{2}kA^2}=\dfrac{4}{9}\Leftrightarrow W_t=\dfrac{4}{9}W\left(J\right)\)

\(\Rightarrow W_d=W-W_t=W-\dfrac{4}{9}W=\dfrac{5}{9}W\left(J\right)\Rightarrow B.\dfrac{5}{9}W\left(J\right)\)

Câu này em nghĩ nên cho thêm đơn vị Jun ạ!

8/ \(T-mg\cos\alpha=m.a_{ht}=\dfrac{mv^2}{l}\)

\(\Leftrightarrow T=mg\cos\alpha+2mg\left(\cos\alpha-\cos\alpha_0\right)\)

\(\Leftrightarrow T=mg\left(3\cos\alpha-2\cos\alpha_0\right)\)

Lực căng cực đại khi vật ở vị trí thấp nhất

\(\Rightarrow\alpha=0\Rightarrow T_{max}=mg\left(3.1-2\cos60^0\right)=2mg\left(N\right)\)

Lực căng cực tiểu khi vật ở vị trí ban đầu

\(\Rightarrow\alpha=60^0\Rightarrow T_{min}=mg\left(3.\dfrac{1}{2}-2.\dfrac{1}{2}\right)=0,5mg\left(N\right)\)

\(\Rightarrow\dfrac{T_{max}}{T_{min}}=\dfrac{2}{0,5}=4\Rightarrow D.4\)

7 tháng 4 2021

Gửi các em Infographic để ghi nhớ nội dung chủ đề này tốt hơn. Nếu thấy hữu ích các em comment cho cô biết để cô làm tiếp các chủ đề sau nhé ^^.

undefined

undefined

23 tháng 8 2016

f_0 = \frac{\sqrt{\frac{g}{l}}}{2 \pi = \frac{1}{2}(Hz)(\pi^2 \approx 10)}
Xét: f_1 - f_0 < f_2 - f_0 ⇒ Biên độ giảm