K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 4 2017

Gọi đường cao còn lại là h.

Giải bài 45 trang 133 Toán 8 Tập 1 | Giải bài tập Toán 8

Theo quan hệ giữa đường xiên và hình chiếu thì ta có chiều cao của hình bình hành luôn nhỏ hơn cạnh không tương ứng với nó.

⇒ Đường cao có độ dài bằng 5cm ứng với cạnh 4cm

⇒ SABCD = 4.5 = 20

Mà SABCD = h.6

⇒ h.6 = 20 ⇒ h = 20 : 6 = 3,33 (cm).

22 tháng 4 2017

Cho hình bình hành ABCD. Gọi AH, AK lần lượt là đường cao kẻ từ A đến CD, BC.

Ta có: SABCD = AB.AH = AD.AK

SABCD = 6.AH = 4.AK

Một đường cao có độ dài 5 cm thì đó là AK vì AK < AB (5 < 6), không thể là AH vì AH < 4.

Vậy 6.AH=4.5=20 => AH = \(\dfrac{10}{3}\)(cm)

23 tháng 10 2018

Bài tập: Diện tích hình thang | Lý thuyết và Bài tập Toán 8 có đáp án

Xét hình bình bình ABCD có AB = CD = 8( cm ) và AD = BC = 6( cm )

Từ A kẻ các đường cao AH,AK.

Khi đó ta có:

Mà một hình bình hành thì chỉ có một diện tích chung nên 8.AH = 6.AK

Nếu độ dài đường cao thứ nhất là AH = 5( cm ) thì:

8.5 = 6.AK ⇔ AK = (8.5)/6 = 20/3( cm ) là độ dài đường cao thứ hai.

Nếu độ dài đường cao thứ nhất là AK = 5( cm ) thì:

8.AH = 6.5 ⇔ AH = (6.5)/8 = 15/4( cm ) là độ dài đường cao thứ hai.

Vậy bài toán này có hai đáp số 

30 tháng 5 2018

Bài tập tổng hợp chương 2 Hình học 8 | Lý thuyết và Bài tập Toán 8 có đáp án

Xét hình bình bình ABCD có AB = CD = 8( cm ) và AD = BC = 6( cm )

Từ A kẻ các đường cao AH,AK.

Khi đó ta có:

Mà một hình bình hành thì chỉ có một diện tích chung nên 8.AH = 6.AK

Nếu độ dài đường cao thứ nhất là AH = 5( cm ) thì:

8.5 = 6.AK ⇔ AK = (8.5)/6 = 20/3( cm ) là độ dài đường cao thứ hai.

Nếu độ dài đường cao thứ nhất là AK = 5( cm ) thì:

8.AH = 6.5 ⇔ AH = (6.5)/8 = 15/4( cm ) là độ dài đường cao thứ hai.

Vậy bài toán này có hai đáp số

17 tháng 5 2017

Bài tập: Diện tích hình thang | Lý thuyết và Bài tập Toán 8 có đáp án

Xét hình bình bình ABCD có AB = CD = 8( cm ) và AD = BC = 6( cm )

Từ A kẻ các đường cao AH,AK.

Khi đó ta có:

Mà một hình bình hành thì chỉ có một diện tích chung nên 8.AH = 6.AK

Nếu độ dài đường cao thứ nhất là AH = 5( cm ) thì:

8.5 = 6.AK ⇔ AK = (8.5)/6 = 20/3( cm ) là độ dài đường cao thứ hai.

Nếu độ dài đường cao thứ nhất là AK = 5( cm ) thì:

8.AH = 6.5 ⇔ AH = (6.5)/8 = 15/4( cm ) là độ dài đường cao thứ hai.

Vậy bài toán này có hai đáp số

28 tháng 1 2022

undefined

AK = 5cm ; AH = ?

SABCD = AH . CD

SABCD = AK . BC

=> AH . CD = AK . BC

=> AH . 6 = 5 . 4 

=> AH =\(\dfrac{5.4}{6}\) = 3,3 cm

29 tháng 1 2022

amazing good job

10 tháng 3 2017

Gọi x (cm) là độ dài đường cao thứ hai ứng với cạnh 8cm của hình bình hành (0 < x < 5)

Theo công thức tính diện tích hình bình hành ta có phương trình:

6.5 = 8.x ⇔ 8x =30 ⇔ x = 3,75 (tmđk)

Vậy độ dài đường cao thứ hai là 3,75cm

GV
29 tháng 4 2017

Nếu a là độ dài cạnh và h là đường cao tương ứng, b là cạnh kia và k là đường cao tương ứng thì ta có: a.h = b.k (vì cùng bằng diện tích hình bình hành).

Đối với bài toán đã cho, ta có 2 trường hợp sau:

Trường hơp 1: đường cao đã cho (5cm) ứng với cạnh 6cm. Khi đó đường cao thứ hai là: \(\dfrac{5.6}{8}=\dfrac{15}{4}\left(cm\right)\)

Trường hợp 2: đường cao 5cm ứng với cạnh 8cm, khi đó đường cao thứ hai là: \(\dfrac{5.8}{6}=\dfrac{20}{3}\left(cm\right)\)

16 tháng 9 2017

Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

Giả sử hình bình hành ABCD cói AB = 8cm, AD = 6cm.

Kẻ AH ⊥ CD, AK ⊥ BC.Ta có 5 < 6, 5 < 8

Đường cao là cạnh góc vuông nhỏ hơn cạnh huyền thỏa mãn có hai trường hợp:

*Trường hợp 1: AK = 5cm

Ta có: S A B C D  = AK.BC = 5.6 = 30 ( c m 2 )

S A B C D  = AH.AD = 8.AH

Suy ra: 8.AH = 30 ⇒ AH = 30/8 = 15/4 (cm)

*Trường hợp 2: AH = 5cm

Ta có:  S A B C D = AH.CD= 5.8 = 40 ( c m 2 )

S A B C D  = AK.BC = 6.AH

Suy ra: 6.AK = 40 ⇒ AK = 40/6 = 20/3 (cm)

Vậy đường cao thứ hai có độ dài là 15/4 cm hoặc 20/3 cm

Bài toán có hai đáp số.