Cho tam giác ABC vuông tại A có góc ABC = 2 góc ACB, đường cao AD. Kẻ tia phân giác góc...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 5 2021

A B C 6 8 H E D F K

a, Xét tam giác ABC và tam giác HBA ta có : 

^BAC = ^AHB = 900

^B chung 

Vậy tam giác ABC ~ tam giác HBA ( g.g )

25 tháng 5 2021

b, Xét tam giác AHB và tam giác CHA ta có : 

^AHB = ^CHA = 900

^ABH = ^HAC ( cùng phụ với ^BAH )

Vậy tam giác AHB ~ tam giác CHA ( g.g )

\(\Rightarrow\frac{AH}{HC}=\frac{HB}{AH}\Rightarrow AH^2=HB.HC\)

21 tháng 4 2021

hình bạn tự vẽ

a) Vì ΔABC vuông tại A, áp dụng định lí Pythagoras ta có :

BC2 = AB2 + AC2

=> \(AC=\sqrt{BC^2-AB^2}=\sqrt{10^2-6^2}=8cm\)

Vì BD là phân giác của ^ABC nên theo tính chất đường phân giác trong tam giác ta có : AD/AB = CD/BC

Áp dụng tính chất dãy tỉ số bằng nhau ta có : \(\frac{AD}{AB}=\frac{CD}{BC}=\frac{AD+CD}{AB+BC}=\frac{AC}{AB+BC}=\frac{8}{16}=\frac{1}{2}\)

=> \(\hept{\begin{cases}\frac{AD}{AB}=\frac{1}{2}\\\frac{CD}{BC}=\frac{1}{2}\end{cases}}\Leftrightarrow\hept{\begin{cases}AD=\frac{1}{2}AB=3cm\\CD=\frac{1}{2}BC=5cm\end{cases}}\)

b) Xét ΔBHA và ΔBAC có :

^B chung

^H = ^A = 900 

=> ΔBHA ~ ΔBAC (g.g)

=> BH/BA = HA/AC = AB/BC

=> AB2 = BH.BC ( đpcm )

=> BH = AB2/BC = 36/10 = 3,6cm

=> HC = BC - BH = 10 - 3,6 = 6,4cm

c) Xét ΔBHI và ΔBAD có :

^H = ^A = 900

^HBI = ^ABD ( BD là phân giác của ^B )

=> ΔBHI ~ ΔBAD (g.g)

=> BH/BA = HI/AD = BI/BD

=> HI = AD.BH/AB

Vì ΔAHB vuông tại H, áp dụng định lí Pythagoras ta có :

AB2 = BH2 + AH2

=> \(AH=\sqrt{AB^2-BH^2}=\sqrt{6^2-3,6^2}=4,8cm\)

=> HI = AD.BH/AB = 3.3,6/6 = 1,8cm

=> IH.DC = 1,8 . 5 = 9cm ; AD2 = 32 = 9cm

=> IH.DC = AD2 (đpcm)

:)