Cho tam giác ABC vuông tại A, AB=3cm,AC=6cm. Gọi E là trung điểm của AC, M là trung điể...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 12 2018

1a/IM vuông góc AB=>AMI=90 do

IN vuông góc AC=>ANI=90 do

△ABC vuông tại A=>BAC=90 do

=>góc AMI= gocANI= gocBAC= 90 do => tứ giác AMIN là hình chữ nhật

1b/Có I dx vs D qua N => ID là đường trung trực của AC=>AI=AD; IC=ID(1)

Trong △ABC có AI là đường trung tuyến ứng với cạnh huyền BC =>AI=1/2BC hay AI=IC(2)

Từ (1) va (2) => AI=IC=CD=DA => Tu giac AICD la hthoi

3 tháng 12 2018

2a/ Có M là TĐ AB và M là điểm đối xứng giữa E và H

=> AM=MB VA EM=MH hay AB giao voi EH tai TD M

=> Tg AEBH la hbh co AHB=90 do => Hbh AEBH la hcn

2b/Co AEBH la hcn=>EH=AB

+) Mà AB=AC=>EH=AC(1)

+) △ABC cân tại A có AH là đường cao đồng thời phân giác của góc BAC => góc BAH=góc HAC.

Co goc BAH=1/2 EAH ; góc AHE=1/2AHB

Ma goc EAH= goc AHB=>BAH=AHE hay goc HAC= goc AHE.

Mà 2 góc này ở vị trí SLT=> EH//AC(2)

Từ (1) va (2)=>tg AEHC la hbh

Bài 1: Cho tam giác ABC vuông tại A. Vẽ I,K lần lượt là trung điểm của AB,BC. Gọi D là điểm đối xứng của A qua K.a. Chứng minh tứ giác ABDC là hình chữ nhật.b. Gọi E là điểm đối xứng của K qua I. Chứng minh tứ giác AKBE là hình thoi.c. Chứng minh tứ giác AEKC là hình bình hành.d. Tìm điều kiện để hình thoi AKBE là hình vuông.Bài 2: Cho tam gaics ABC vuông tại A, đường cao AH, trung tuyến AM. Gọi D...
Đọc tiếp

Bài 1: Cho tam giác ABC vuông tại A. Vẽ I,K lần lượt là trung điểm của AB,BC. Gọi D là điểm đối xứng của A qua K.

a. Chứng minh tứ giác ABDC là hình chữ nhật.

b. Gọi E là điểm đối xứng của K qua I. Chứng minh tứ giác AKBE là hình thoi.

c. Chứng minh tứ giác AEKC là hình bình hành.

d. Tìm điều kiện để hình thoi AKBE là hình vuông.

Bài 2: Cho tam gaics ABC vuông tại A, đường cao AH, trung tuyến AM. Gọi D là trung điểm AB, lấy điểm E đối xứng với M qua D.

a. Chứng minh: M và E đối xứng nhau qua AB.

b. Chứng minh: AMBE là hình thoi.

c. Kẻ HK vuông góc với AB tại K, HI vuông góc với AC tại I. Chứng minh IK vuông góc với AM

Bài 3: Cho tam giác ABC có ba góc nhọn, trực tâm H. Đường thẳng vuông góc với AB kẻ từ B cắt từ đường thẳng vuông góc từ AC kẻ từ C tại D.

a. Chứng minh tứ giác BHCD là hình bình hành. 

b. Gọi M là trung điểm BC, O là trung điểm AD. Chứng minh 2OM = AH

1

a)Ta có 

BK=KC (GT)

AK=KD( Đối xứng)

suy ra tứ giác ABDC là hình bình hành (1)

mà góc A = 90 độ (2)

từ 1 và 2 suy ra tứ giác ABDC là hình chữ nhật

b) ta có

BI=IA

EI=IK

suy ra tứ giác AKBE là hình bình hành (1)

ta lại có 

BC=AD ( tứ giác ABDC là hình chữ nhật)

mà BK=KC

      AK=KD

suy ra BK=AK (2)

Từ 1 và 2 suy ra tứ giác AKBE là hình thoi

c) ta có

BI=IA

BK=KC

suy ra IK là đường trung bình

suy ra IK//AC

          IK=1/2AC

mà IK=1/2EK

Suy ra EK//AC 

           EK=AC

Suy ra tứ giác  AKBE là hình bình hành

B A C D E K

1: AM=5cm

2: Xét tứ giác AMCE có

D là trung điểm của AC

D là trung điểm của ME

Do đó: AMCE là hình bình hành

mà MA=MC

nên AMCE là hình thoi

3 Xét tứ giác ABME có 

ME//AB

ME=AB

Do đó: ABME là hình bình hành

4 tháng 1 2022

1. Xét tam giác ABC vuông tại A: 

\(BC^2=AB^2+AC^2\) (Định lý Pytago).

\(\Rightarrow BC=\sqrt{6^2+8^2}=\sqrt{100}=10\left(cm\right).\)

Xét tam giác ABC vuông tại A: AM là trung tuyến (gt).

\(\Rightarrow\) \(AM=\dfrac{1}{2}BC=\dfrac{1}{2}.10=5\left(cm\right).\)

2. M là trung điểm của BC (AM là trung tuyến của tam giác ABC).

\(\Rightarrow\) \(MC=MB.\)

Mà \(AM=\dfrac{1}{2}BC\left(cmt\right).\)

\(\Rightarrow\) \(MC=MB=AM=\dfrac{1}{2}BC.\)

Xét tứ giác AMCE: 

+ D là trung điểm AC (gt).

+ D là trung điểm ME (E là điểm đối xứng với M qua D).

\(\Rightarrow\) Tứ giác AMCE là hình bình hành (dhnb).

Mà \(AM=MC\) (cmt).

\(\Rightarrow\) Tứ giác AMCE là hình thoi (dhnb).

3. Tứ giác AMCE là hình thoi (cmt). \(\Rightarrow\) \(AE=MC\) và \(AE\) // \(MC\) (Tính chất hình thoi).

Mà \(MB=MC\left(cmt\right).\)

\(\Rightarrow\) \(AE=MB.\)

Xét tứ giác AEMB có:

\(AE=MB\left(cmt\right).\)

+  \(AE\) // \(MB\left(cmt\right).\)

\(\Rightarrow\) Tứ giác ABME là hình bình hành (dhnb).