Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Kẻ Ax là tiếp tuyến của đường tròn (O)
=> Ax ⊥ AO tại A (1)
Ta có : \(\widehat{xAB} = \widehat{ABC} \) ( góc tạo bởi tiếp tuyến và dây và góc nội tiếp chắn \(\widehat{AC}\) )
Lại có : \(\begin{cases} \widehat{ABC} + \widehat{ACB} + \widehat{BAC} = 180^o\\ \widehat{ADQ} + \widehat{AQD} + \widehat{BAC} = 180^o \end{cases} \)
Mà \(\widehat{AQD} = \widehat{ACB}\) ( 2 góc nội tiếp cùng chắn cung \(\widehat{BD} \) )
=> \(\widehat{ABC} = \widehat{ADB} \) => Ax // QD (2)
Từ (1) và (2) => QD ⊥ AO
C/m AO vuông góc với QC
Xét tam giác QBO và tam giác COP
1)Cho tam giác nhọn ABC (AB<AC) nội tiếp đường tròn (O). Gọi H là trực tâm của tam giác ABC, K là giao điểm thứ hai của AH với đường tròn (O). Đường thẳng đi qua H và vuông góc với OA cắt BC ở I. Chứng minh rằng IK là tiếp tuyến của đường tròn (O)
~~~~~~~~~ Bài làm ~~~~~~~~~
A B C O I K H Q D
Ta có: \(\widehat{HBD}=\widehat{DAC}\) (Cùng phụ với \(\widehat{ACB}\))
\(\widehat{KBD}=\widehat{DAC}\)( Góc nối tiếp cùng chắn cung \(KC\))
\(\Rightarrow\widehat{HBD}=\widehat{KBD}\)
Ta lại có: \(BD\perp HK\)
\(\Rightarrow BD\) là đường trung trực của \(HK\)
\(\Rightarrow\Delta IHK\) cân tại \(I\)
\(\Rightarrow\widehat{BKD}=\widehat{BHD}=\widehat{AHQ}\)
Lại có:\(\widehat{DKO}=\widehat{HAO}\)( \(\Delta OKA\) cân tại \(O\))
Vì vậy: \(\widehat{DKO}+\widehat{BKD}=\widehat{HAO}+\widehat{AHQ}=90^0\)
\(\Rightarrow\widehat{KIO}=90^0\)
\(\Rightarrow IK\)là tiếp tuyến của đường tròn \(\left(O\right)\)
(Hình vẽ chỉ mang tính chất minh họa cái hình vẽ gần cả tiếng đồng hồ :)) )