Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)
AC=AB=> A thuộc tt BC (1)
BD=CD=>D thuộc tt BC (2)
Từ (1);(2) ta suy ra: AD là tt BC
=> AD vuông góc BC mà H là giao BC
=> AH vuông góc BC
Tg ABH là nửa tg đều nên AH= (căn 3.a)/2= (căn 3.căn 3.4)/2=6 cm
Tg ACD nội tiếp (O) đg kính AD=> Tg ACD vuông tại C
CH^2=AH.HD=>HD= 12/6=2
=> AD=6+2=8
Vì AD=2R=>R=4
Hok tốt !
mk gợi ý phần b nhé,
dẽ dàng nói đc tam giác AOC cân tại O =) góc AOE=góc COE =) có thể chứng minh đc tam giác AOE = tam giác COE(c-g-c)
=) EC vuông góc với OC =) đpcm
tiếp tục gọi giao điểm của AC với BE là M =) cm đc tam giác AME = tam giác CMB ( dựa vào AE//BC) =) AE = BC =) tứ giác AECB là hình bình hành
mà AB=BC =) tứ giác AECB là hình thoi
M A B C D O P Q I N E F
a) Sđ(CM = Sđ(BC => ^BDC = ^MAC hay ^IDP = ^PAI => ADPI nội tiếp
b) Theo câu a: ^API = ^ADI = ^AMB => IP || MQ, tương tự IQ || MP. Suy ra MPIQ là hình bình hành => PI =MQ
c) Dễ thấy I là tâm nội tiếp tam giác ABC => N là điểm chính giữa cung nhỏ AB => N cố định
Đường tròn (O) có MN là dây cung => Trung điểm của MN nằm trên đường tròn đường kính ON cố định
Giới hạn quỹ tích: NA,NB cắt (ON) tại E và F khác N, vậy thì trung điểm MN chạy trên cung lớn EF của (ON).